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We present the Mathematica package SimpleGroups, designed for the light computations in sim-
ple or semi-simple Lie groups. It contains various commands for dealing with roots and weights,
weights diagrams, etc. In particular, it can decompose the given representation of groups over the
representations of subgroups. It can be used for...
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I. INTRODUCTION

We present the package for practical calculations in the (semi-)simple Lie groups. The package is programmed on
the Mathematica language. And can be run on Mathematica 7.0 and higher. The package contains the commands
to deal with roots systems, weight diagrams for any simple groups and their products. It contains the commands
for calculation of Clebsch-Gordan decomposition, as well as, decomposition of representation onto representations of
subgroups. It can calculates the Clebsch-Gordan coefficient for SU -group. Also it contains several commands for
visualizing the results.
There are many packages and programmes for the group theory. Some of the are comprehensive, e.g. the programm

LIE [1]. Some are devoted to particular aspects of the group theory calculations. What is the reason to produce one
more programm for group calculation?
First of all, the package is based on the Mathematica, which is reference calculation system for the main part of

physicists. One does not need to learn the interpretation language or use external compilations. The Mathematica is
not the most efficient language, but it is the payment for the simpleness and universality of interpretator. The usage
of Mathematica also allows to use the results for later calculations, without special transferring. Second, we try to
use more common (for physicist) notations, and put several commands for transferring weights and indices from one
notation to another. Third, we collect together algorithms, which can be found only separately.
One of the main feature of SimpleGroups is the usage of the Gelfand-Tsetlin (Gelfand-Tsetlin patterns, GT-

patterns) state-notation for the calculation. The GT-patterns are the patterns for unique enumeration of the states
within multiplet. They was introduced in ref. [2] for the SU and SO -groups, and recently revised in [? ], for
all classical series. The algorithm based on GT-patterns are much more efficient then classical ones. Since the
GT-patterns are not very well-known in physics society we collect main rules in appendix.
The structure of this maintenance article is following. In the sect.II we shortly summarize all definitions which we

used. The sect. III contains description of the general package structure, descriptions of some commands with many
examples. The main information and list of all variables, commands and options can be found in tables 1,2,3, in text.
In the appendix we put the main expressions for calculation with GT-patterns.

II. SIMPLE LIE GROUPS BASICS

The Lie group is a finite group which generators Ti form the algebra under commutation,

[Ti, Tj ] = c k
ij Tk, (2.1)

where c k
ij are complex numbers called structure constants. The number of group generators called dimension of the

algebra. The Lie group is simple if it is non-Abelian and ideal of its algebra is trivial or algebra it-self. The Lie
group is semisimple if its algebra has non-zero ideal. Thus, the Lie algebra of direct product if two simple groups is
semisimple.
The convenient way to deal with the algebra is to present it in the standard form. In the standard form the generators

of the algebra are split onto two parts: Cartan generators Hi, shifting Eα generators. The Cartan generators are the
maximum set of generators which commute with each other:

[Hi,Hj ] = 0. (2.2)

The number of the Cartan generators called rank of the group and denoted by l. The shifting generators can be
choused in the such way that:

[Hi, Eα] = αiEα, (2.3)

where αi is an element of the root vector, or just root, α = {α1, α2, ..., αl}. The standard form of the algebra is:

[Hi,Hj ] = 0, (2.4)

[H, Eα] = αEα, (2.5)

[Eα, E−α] = α ·H, (2.6)

[Eα, Eβ ] = NαβEα+β if α+ β is a root, (2.7)

[Eα, Eβ ] = 0 otherwise.

The set of all roots called root system, Φ. It satisfies the following properties:
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• Φ is finite, and span the euclidian space and does not contain 0.

• If α ∈ Φ, then the only aliquot root to it is −α ∈ Φ.

• If α,β ∈ Φ then ⟨βα⟩ = 2β·α
αα is integer.

• The reflection operation σα(β) = β −α⟨βα⟩ leaves Φ invariant for all α ∈ Φ.

The given root system completely defines the algebra. Approximately all practical tasks related to Lie groups can
be reformulated in terms of roots.
One can chouse l linear-independent roots αi(i = 1..l) to be the basis ∆ in the root space. These roots are called

simple root. Every root from Φ can be written as β =
∑l

i=1 kiαi, where coefficients ki are simultaneously non-negative
or non-positive integers. If all ki are non-negative (non-positive) the root β is called positive, β ≻ 0 (negative, β ≺ 0).
Thus the root system is partially ordered by comparison ≻, one says that β ≻ α if β −α ≻ 0.

There are two often used elements belongs to the root system. The root β =
∑l

i=1 kiαi with coefficients ki > pi,

γ =
∑l

i=1 piαi for any γ, is called maximal root. The vector δ = 1
2

∑
α≻0 α is called Weyl vector.

The set of simple roots completely defines the root system. Let us chouse the set of simple roots {α1,α2, ..,αl}.
The matrix C with matrix element Cij = ⟨αiαj⟩ is called Cartan matrix. Cartan matrix depends on the order of
simple roots, is independent on the choice of the simple roots. Cartan matrix gives comprehensive information about
algebra. From the definition of the root system comes out that the only elements of Cartan matrix are 0,±1,±2,±3.
It is very convenient to present the Cartan matrix in form of the Dynkin diagram. The vertex of Dynkin graph

denotes the simple root. Two vertices (αi, αj) are connected by CijCji(no summation) links. If there are more then
two links the arrow point to shorter root.
There is an important theorem on classification which states that there are finite number of Dynkin graph topologies,

and, therefore, there are only finite number of simple-algebra types. There are four series of algebras Al, Bl, Cl and
Dl, and five exceptional algebras E6, E7, E8, F4 and G2. The relation of these algebras with special algebras are the
following: Al = su(l + 1), Bl = so(2l + 1), Cl = sp(2l) and Dl = so(2l).
The realization of these systems can be found in many books, particulary we use the ”canonical” realization by

Bourbaki [4]. Although it is not intuitive and sometimes uses bigger dimension target space, but it has rather simple
form and easier to program.
A representation of a group is a homomorphism of group onto a group of linear operators acting on a linear vector

space V . The dimension of V is called the dimension of the representation.
Every state in V can be unique (up to possible degeneration coming from other symmetries) labeled by eigenvalues

of Cartan generators:

H|Vµ⟩ = µ|Vµ⟩. (2.8)

The vector of eigenvalues µ is called the weight of the state. All weights form the weight lattice in the root space
such that ⟨µ,α⟩ =integer, for any root α. The basis on the lattice is usually choused to be dual to simple roots:
⟨λi,αj⟩ = δij . These weights are called fundamental weights and expressed in through the Cartan matrix as follows:

λi = (C−1) k
i αk. (2.9)

The coefficients of decomposition of a weight over fundamental weights are called Dynkin indices, µ =
∑l

i=1 kiλi.
The set of weights is partially ordered by comparison ≻ similar to the root space.
The shifting operator Eα transforms the state Vµ to Vµ+α: EαVµ = Vµ+α. Thus the shifting generators corresponded

to the positive (negative) roots are called rising(lowering) generators. There is the state in V which is annihilated
by all rising generators. The weight corresponded to this state is called the eldest weight of the representation. It
completely defines the representation, and the common practice is to denote the representation by writing the Dynkin
indices of its eldest weight. The eldest weights of the fundamental representations are the fundamental weights.
The dimension of the representation can be calculated using the Weyl formula:

dimV =
∏
α≻0

(δ + λ) ·α
δ ·α

, (2.10)

where δ is Weyl vector, λ is the eldest weight of the representation and α are positive root.
There are many ways to construct the weight diagram of the representation. One of the most efficient is to use the

Freidantel formula:

((λ+ δ) · (λ+ δ)− (µ+ δ) · (µ+ δ))m(µ) = 2
∑
α≻0

∑
i>0

m(µ+ iα)(µ+ iα) ·α, (2.11)
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TABLE I: The global constants setting by SetGroup.

Name of constant Description

SimpleRoots The set of simple roots
PositiveRoots The set of positive roots
MaximalRoots The list of maximal roots
FundamentalWeights The set of fundamental weights in the same order as simple roots
WeylVector Weyl vector
Rank The rank of group
CoxeterNumber The Coxeter number of group

where m(µ) is multiplicity of the state with weight µ, λ is the eldest weight of the representation and δ is the Weyl
vector of the algebra. This relation with addition relations m(λ) = 1 and m(λ+ iα) = 0 iteratively gives the whole
weight diagram.
There are important problem in the Lie group theory: how to uniquely enumerate the states in the multiplet.

Without the universal enumeration of the states inside the group many applications are senseless, e.g. the construction
of Clebsch-Gordan coefficients. One of the possible solution is to use the semi-classical Young tableaux. However this
is not very convenient because such notation relates more to the tensor construction of the group representation then
to Cartan-Weyl construction. Also there are no commonly accepted version of Young tableaux for SO and SP group,
see e.g. [6]. The alternative variant of the states enumerations is the usage of, so called, Gelfand-Tsetlin patterns
(GT-patterns). They were introduces for the SU and SO-groups in 50-s in refs. [2]. And recently reconsidered for
all classical groups by Mosev in [3]. The main idea of the GT-patterns consists (schematically) the following: one
takes the set of groups with lowering rank (e.g. SU(4) → SU(3) → SU(2) → U(1)) and enumerate the state by it
belongness to the multiplet of every group in the chain. The main technical details on the GT-patterns are collected
in the appendix.
Also GT-patterns provide very efficient method of the computation of weight diagrams. One can just write down

all unforbidden (see appendix) GT-patterns with the given upper line, which is fixed by the eldest weight, and the
result is all states from the given representation. In the package we use this algorithm everywhere where it is possible.

III. PACKAGE COMMANDS

A. Installation

The package is written on Mathematica 7, and we not guarantee the proper work of commands on earlier versions.
For installation of the package chouse File→Install... . In opened window set Type of Item to Install: Package,

Source: the path to the file SimpleGroups.m. Into the line Install Name write the name of package (here we use
the name SimpleGroups). Press the Finish-button.
Now the package will be automatically loaded after the calling command: <<SimpleGroups‘ . It also shows the

version of the package installed on your Mathematica. The latest version can be found on site: www.tp2.de.

B. General description and constants

The package SimpleGroups can be viewed as a library of roots and weights for the simple groups equipped with
constructor and deconstructor of weight diagrams. Also it contains the commands for plotting the multiples.
Although one can apply the package commands to his/her-own realization of the root space, the primary intend is

to use the builded-in ”canonical” realization of [4]. Many commands are constructed in such a way that they exploit
the fitches of that realization, such that absence of square roots, normalization, etc. The universal realization also
allows to avoid repeated procedures and, therefore, speeds up calculations. To set the group under consideration use
the command SetGroup[].
The command SetGroup[] sets the global constants such as rank of the group, root system, fundamental weight,

etc. The full list of the constants can be in table I.
The argument of the SetGroup[] can be A[], B[], C[], D[], E[], F[4], G[2], SU[],SO[],SP[], where in square

brackets the rank stays, or their product e.g. SU[2]SU[2]. The letter is understood as the direct product of groups,
therefore, the roots and weights constants would have the block-diagonal form. Note, that MaximalRoot in this case
will return the list of maximal roots for every subgroup in product. We used the following correspondence in group
notation:
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A[1]=B[1]=C[1]=D[1], D[2]=A[1]A[1], D[3]=A[3],
SU[l]=A[l − 1], SP[l]=C[l], SO[2l + 1]=B[l], SO[2l]=D[l].

The commands can be separated onto two categories, which use the global definition set by SetGroup[] and which
not. Full list of commands in the package version 1.0 is given in table II, where we have used the usual Mathematica
notation: __ means that one can more then one argument of the type, ___ means that one can put zero or any number
of arguments of the type. Some commands use an options which are used in usual way: option->optionName. The
full list of used options is presented in Table III.
Most part of commands presented in table III are clear with out addition explanation. For the rest we give more

detailed description in the next sections.

C. BuildRep, DynkinLabels & Weight

Since the package uses the explicit realizations of the weight spaces one of the main command is BuildRep. The
command returns the weight diagram for the representation specified by the eldest weight.
There are thee options which can be used within BuildRep: RepNotation, OutputMethod and

NormalizationMethod. The first is responsible for the reading of the argument and can be "DynkinLabels" (de-
fault) or "EldestWeight". Note, for the "EldestWeight" the canonical realization should be used. The option
OutputMethod is responsible for the format of the result. By definition the resulted weights are presented by their
Dynkin labels ("DynkinLabels"), but they also can be presented as "Weights" or as "GTPatterns". The last version
available only for simple classical groups (A, B, C, D-series) and returns the Gelfand-Tsetlin patterns (see the details
of pattern definitions in Appendix). With the option OutputMethod->"Weights" one can use the addition option
NormalizationMethod which specifies the realization of the weight space the details can be found in the section D.
Often during the consideration representation properties one needs to switch between different notations. There are

two commands which are responsible for such transitions. The first, DynkinLabels, makes transformation of weight
vectors (or GT-patterns) to Dynkin indices. The second, Weight, makes transformation of the Dynkin indices (or
GT-patterns) to weight vectors. The form of argument is specified by the option InputMethod (see table II for more
details). Note, that the command Weight also has the option NormalizationMethod (see section D). Both command
works on single weight or over list of weights or over weight diagram.
The main regimes of the commands is illustrated by the following program, which calculate and present the quark-

triplet in different forms:

in SetGroup[SU[3]]

in BuildRep[{1,0}] (Dynkin indices of weights)

out {{{0, -1}, 1}, {{-1, 1}, 1}, {{1, 0}, 1}}

in BuildRep[{1,0},OutputMethod->"Weights"] (Weights in the canonical realization)

out {{{-1/3, -1/3, 2/3}, 1}, {{-1/3, 2/3, -1/3}, 1}, {{2/3, -1/3, -1/3}, 1}}

in BuildRep[{1,0},OutputMethod->"Weights",NormalizationMethod->"Coxeter"] (Weights in the Coxeter
realization)

out {{{0, −1√
3
}, 1}, {{1

2 ,
1

2
√
3
}, 1}, {{ 1

2 ,
1

2
√
3
}, 1}}

in BuildRep[{1,0},OutputMethod->"GTPatterns"] (Gelfand-Tsetlin patterns)

out

 {1, 0, 0} {1, 0, 0} {1, 0, 0}
{0, 0} {1, 0} {1, 0}
{0} {0} {1}



D. PhysicalNormalization & PhysicalNormalizationMatrix

”Canonical” realization of the root spaces is very convenient for calculations and programming, economical for
memory. But in most its part ”canonical” realization has no ”experimental” sense. The good example is familiar to
everyone SU(3) algebra. The rank of algebra is 2, and in the ”canonical” realization simple roots have the form:

α1 = {1,−1, 0}, α2 = {0, 1,−1}. (3.1)
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FIG. 1: Weight diagram of {1, 0, 1} rep-
resentation of SU(4). Edges connects
weight differs by positive roots.

3

FIG. 2: Weight diagram of {1, 0, 1} rep-
resentation of SU(4). Edges connects
weight differs by positive roots of SU(3)
sub-group, based on α1 and α2 roots.

3

FIG. 3: Weight diagram of {1, 0, 1}
representation of SU(4). Edges con-
nects weight differs by positive roots of
SU(2) × SU(2) sub-group, based on α1

and α3 roots.

The first fundamental weight is

λ1 = {2
3
,−1

3
,−1

3
},

and not everyone can recognize here the usual (I3,M) = { 1
2 ,

1
2
√
3
} – the weight of u-quark.

To make the live easier we introduce the command PhysicalNormalization. This command rotates and re-scales
(and also remove the extra-components of weights) the root space into more practical form. In new realization the
first root is pointing into the 1-direction, the second root lies in the (1, 2)-plane, the third in (2, 3)-plane, etc. The
length of roots is determined by the normalization condition

∑
α≻0 α ·α = K, where K = h

2 (h is the Coxeter number)
by definition.
The normalization factor K can be changed by option NormalizationMethod. It takes three possible values

Coxeter, Unity and Half, which satisfies to K = h
2 , 1 and 1

2 .
The command can be applied to an individual weight and as well, to list of weights or to a weight diagram.
For the purpose of process clearness the rotation-scaling matrixes can be separately obtained by command

PhysicalNormalizationMatrix, which arguments are: the name of algebra ("A", "B",..,"G") and the rank. For
example, the above transformation matrix was:

in PhysicalNormalizationMatrix["A",2]

out

 1
2 − 1

2 0
1

2
√
3

1
2
√
3

− 1√
3

1√
6

1√
6

1√
6



E. DecomposeRep & CGDecomposition

During the investigation of multiplets intrinsic structure one often needs to extract the multiplets of sub-algebra.
Also such task are often appears in GUT-theories, where one wants to destroy the multiplet of a ”big” group onto
multiplet of ”small” ones. Although this question is very difficult in general form it is very easy (but not efficient) in
explicit realization. Let us consider the illustrative example.
The algebra SU(3) can be decomposed in several ways. For example, SU(3) sub-group can be based on any doublet

of roots connected by single line in Dynkin diagram (including maximal root). Let us decompose the adjoint ({1, 0, 1})
SU(4)-multiplet over SU(3)-multiplets. The SU(3) subgroup we build on α1, α2 roots. The weights which are related
to that subgroup should have the same third component. We plot the ”stratified” weight diagram on fig.2. It is
seen by naked eye that there are four sub-multiples, i.e. triplet(the upper plane), anti-triplet(the lower plane) and
reducible composition of octet and singlet (in the middle plane). If we chouse as sub-group SU(2)×SU(2) built, say,
on α1 and α3 roots, we will found the following picture (fig.3): There are two (12 ,

1
2 )-representations (the upper and

lower planes), and reducible composition of (1, 0), (0, 1) and (0, 0) (in the middle plane).
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FIG. 4: Dynkin diagram for SO(16) and the choice of roots for
sub-group SU(2)× SU(2)× SU(4)× SO(4).

ud

s

FIG. 5: One can plot any comments
to weight with PlotRep command

The process of decomposition can be algorithmized in the following way. One builds the root system on the set
of simple roots, and sorts all weights in the given weight diagram over elderness with respect to that system. Then
one takes the eldest weight and subtracts the related multiplet, after that takes next eldest weight and subtracts its
multiplet, and so on until the complete decomposition of the diagram. Although this algorithm is not very efficient it
is only known unified way to make an arbitrary decomposition.
The described procedure is encoded in RepDecompose command, which takes two arguments. The first argument

is precalculated weight diagram of representation to decompose. The second is the set simple roots which forms the
sub-algebra. Important note: The input precalculated weight diagram must be in the weight vectors (with the same
realization as simple root for decomposition).Another important note: There is no checks on the self-consistence
of the set of simple roots, since there are too many possibilities of decompositions and forms. The evaluation of the
command may take many time for large multiplet and large rank sub-groups. The result of the command is the list
of the Dynkin indices of representations.
Let us present the example. The group SO(16) contains SU(2)× SU(2)× SU(4)× SO(4) based on the following

roots: {{α1}, {M}, {α3, α4, α5}, {α7, α8}} (M is maximal root), see fig.4. The following commands would give the
decomposition of the fundamental 128 representation:

in SetGroup[SO[16]]

in rep128=BuildRep[{0,0,0,0,0,0,0,1},OutputMethod->"Weights"]; (see important note)

in SubSimpleRoots={SimpleRoots[[1]],MaximalRoots[[1]],SimpleRoots[[3]],SimpleRoots[[4]],
SimpleRoots[[5]],SimpleRoots[[7]],SimpleRoots[[8]]};

in DecomposeRep[rep128,SubSimpleRoots]

out {{1,0,0,0,0,1,0},{1,0,1,0,0,0,1}, {0,1,0,0,0,0,1},{1,0,0,1,0,1,0},{0,1,1,0,0,1,0},
{1,0,0,0,1,0,1},{1,0,0,0,0,1,0},{0,1,0,1,0,0,1},{0,1,0,0,1,1,0},{0,1,0,0,0,0,1}}

Thus, we have:

128
∣∣∣
SO(16)

= 2

[
1

2
× 0× 1×

(
1

2
, 0

)]
⊕ 2

[
0× 1

2
× 1×

(
0,

1

2

)]
⊕
[
1

2
× 0× 4×

(
0,

1

2

)]
⊕ (3.2)[

0× 1

2
× 4×

(
1

2
, 0

)]
⊕
[
1

2
× 0× 4×

(
0,

1

2

)]
⊕
[
0× 1

2
× 4×

(
1

2
, 0

)]
⊕[

1

2
× 0× 6×

(
1

2
, 0

)]
⊕
[
0× 1

2
× 6×

(
0,

1

2

)] ∣∣∣∣∣
SU(2)×SU(2)×SU(4)×SO(4)

. (3.3)

Note, that the decomposition of the weight diagram over the irreducible representations can be done using the
same algorithm. The only change that the sub-algebra is algebra it-self. The command CGDecomposition returns the
decomposition of product of representation over irreducible representations, i.e. Clebsch-Gordan decomposition. The
argument is weight diagrams of representations to make the product, split by commas. Let us demonstrate it on the
following textbook examples.

in SetGroup[SU[3]]

in quarks = BuildRep[{1, 0}];

in antiquarks = BuildRep[{0, 1}];
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in CGDecomposition[quarks, antiquarks]

out {{1,1}, {0,0}}

in CGDecomposition[quarks, quarks, quarks]

out {{3,0}, {1,1}, {1,1}, {0,0}}

We restore the well-know SU(3) formulae:

3⊗ 3 = 8⊕ 1, (3.4)

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1. (3.5)

The algorithms used inside the programme are based on the GT-patterns and therefore they are much faster for
classical groups, and quite slow for the exceptional groups. For example, to restore the E(8) formula:

248⊗ 248 = 27000⊕ 30380⊕ 3875⊕ 248⊕ 1 (3.6)

takes about 8 hours on the average laptop. Whereas the calculation of SU(9) formula:

240⊗ 240 = 10692⊕ 9240⊕ 4950⊕ 11088⊕ 11088⊕ 4620⊕ 2520⊕ 3402 (3.7)

takes three and half seconds on the same laptop.

F. CGCoefficients

The Clebsch-Gordan (CG) coefficients are used to perform the explicit form of the direct product decomposition
onto irreducible representations:

|r, s⟩ =
∑
s1,s2

Cr,s
s1,s2 |r1, s1⟩|r2, s2⟩, (3.8)

where s, s1, s2 enumerates states within the corresponded multiplet (r, r1, r2). The CG coefficient is non-zero if
the w(s1) + w(s2) = w(s), where w is the weight vector of the state. The CG coefficients satisfies the following
orthonormality conditions:∑

s1,s2

Cr,s
s1,s2

(
Cr′,s′

s1,s2

)∗
= δs,s′δr,r′ ,

∑
r,s

Cr,s
s1,s2

(
Cr,s

s′1,s
′
2

)∗
= δs1,s′1δs2,s′2 . (3.9)

The CG coefficients play important role in the applications. But there are limited number of tables of CG coefficients,
and programmes for generating them, except the case of most popular groups SU(2) and SU(3). Here, we present
the command for the calculation of CG coefficients only for the SU groups.
In general the evaluation of the CG coefficients is not a very difficult algebraic task. The main problem points are

the following: the universal enumeration of the states within the representation and the phase convention for eldest
CG coefficients.
The first of these problems can be solved for the classical groups (i.e. of A, B, C and D types) by the notion of

Gelfand-Tsetlin (GT) patterns, see refs [3]. The GT patterns provides the universal (within the type of algebra) form
of state enumerating, i.e. every state has the unique patterns. The action of shifting operators can be also formulates
throw the patterns (see same refs.). We collect the expressions, which we use with in the package in the appendix.
The second problem consist in the following: the CG coefficients are defined ambiguously up to the rotation which

leaves conditions (3.9) invariant. Practically it is enough to fix the ambiguity for the any given (r, s). We do for the
eldest state in r in the following way: fix the CG coefficient with the greater1 w(s1) to be real and positive. The
additional ambiguity arise in the case if there are N equivalent representations in the CG decomposition. Then one
can rotate the states between these equivalent representations, |r, s⟩ → Urr′ |r′, s⟩, where U is N ×N unitary matrix.
There are many ways to fix this ambiguity, we chouse the simplest. We take first N CG coefficients with the greatest

1 We call the w1 greater then w2 if the first component of w1−w2 (in the Dynkin indices) is positive (and w1 less then w2 if it is negative).
If the the first component of w1 − w2 is zero, we compare the second and so on.
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s1, and for the ri (i = 1..N) put all of them, except i’th to be zero. Such convention is not convenient, but the user
can perform the unitary rotation and chouse the convenient for him/her convention.
The algorithm is described with many details in ref. [5]. The algorithm contains two main parts. The first is

to define the CG coefficients for the eldest states. For that one acts by the rising operators onto eldest states, and
solve the homogenous system of linear equations together with normalization condition (3.9). Here, for the equivalent
representation the N free parameters appear. We fix them and phase ambiguity as discussed above. The second part
is consist in the definition of the rest CG coefficients. For that one takes the CG decomposition of the eldest state
and act by the lowering operators, and again produce CG decomposition of unknown states. Such procedure results
to the linear equation system which defines rest coefficients.
The command CGCoefficients takes two arguments and options. The arguments are the Dynkin labels of the

representations r1 and r2. The result of calculation is saved to five variables CGC, RulesForReps, RulesForStates,
RulesForStates1 and RulesForStates2. The variable CGC contains the 4-index matrix C[[r, s, s1, s2]] of CG coef-
ficients, where the first index corresponds to the result representation r (the interpretation of the indices is in the
variable RulesForReps), the second index corresponds to the state s in r (the interpretation of the indices is in the
variable RulesForStates[[r]]), the third (fourth) index corresponds to the state s1(s2) in r1 (r2) (the interpretation
of the indices is in the variable RulesForStates1(RulesForStates2)). Also there is the visual output which form is
controlled by option OutputMethod.
The option OutputMethod for CGCoefficients has three variants, None, List, Tables(default). Using this option

one can regulate the additional output of CGCoefficients command (since the main output is the values of variables
CGC, RulesForReps, etc). The variant List formats the output as the list of all non-zero CG coefficients with
explicit form of states and their values. The variant Tables formats the output as the collection of tables for every
representation and final state (rows are states of r1 and columns are states of r2).
If one does need all CG coefficients but only for one representation r, option OnlyRep can be used. It has the form

of Dynkin indices for the desired representation. If there are several equivalent representations within decomposition
all of them will be computed.
The example of application of the command can be found in the example files [7]

G. PlotRep2D & PlotRep3D

Often the simplest way to understand the properties of representation is to look at picture of its weight diagram.
There are two commands in the package which draw weight diagrams: PlotRep2D and PlotRep3D, which plots the
projections of weight diagrams onto 2-and 3- dimension plane, respectively. There are two obligatory arguments for
these commands: The first is weight diagram (e.g. calculated by the BuildRep), the second is list of 2 (or 3) linearly
independent vectors, which define the 2(or 3)-dimension plane.
The PlotRep-commands has many different options. Some of them are standard Mathematica options for graph-

ics, these are PointStyle LinkStyle MultiplicitiesStyle AxesStyle, which, obviously, responsible for draw-
ing style of vertices, edges, etc. Some of them just switch on/off the drawing of particular components, these are
ShowMultiplicities, ShowAxes, ShowLinks. And the last option LinksList is responsible for the plotting of edges
between weight-points. For example, the figures 1,-2,-3 differs only by this option. The program which gives these
figures is following:

in SetGroup[SU[4]]

in rep = BuildRep[{1, 0, 1}];

in PlotRep3D[rep, SimpleRoots]

out see FIG.1

in PlotRep3D[rep, SimpleRoots, LinksList->{SimpleRoots[[1]], SimpleRoots[[2]]}]

out see FIG.2

in PlotRep3D[rep, SimpleRoots, LinksList->{SimpleRoots[[1]], SimpleRoots[[3]]}]

out see FIG.3

Note, that in this example the rank of the group is 3, therefore, the natural space for projection is formed by simple
roots. Also, note, that by definition LinksList is PositiveRoots, that is why for the FIG.1 we did not put any
options at all.
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The first argument should be the list of form {{{..},.},{{..},.},...}, like one which is generated by BuildRep
command. The multiplicities which are plot on the figure are the numbers which stand next to weight vector. For
example, the figure 5 can be obtained by the following operations:

in SetGroup[SU[3]]

in rep = BuildRep[{1, 0}];

out {{{2/3,-1/3,-1/3}, 1}, {{-1/3,2/3,-1/3}, 1}, {{-1/3,-1/3,2/3}, 1}}

in newrep={{{2/3,-1/3,-1/3}, "u"}, {{-1/3,2/3,-1/3}, "d"}, {{-1/3,-1/3,2/3}, "s"}}

in PlotRep2D[newrep, SimpleRoots, ShowAxes -> False, MultiplicitiesStyle -> {Bold, 27},
PointStyle -> {Large, Red}]

out see FIG.5

Another example is the picture on the title page, where plot the projection of the 352-plet of SO(12) group onto
the Coxeter plane. Also we marked out the fundamental 32-plet (blue) and 12-plet (green). The text of the program
is following:

in SetGroup[SO[16]]

in rep1 = BuildRep[{1,0,0,0,0,1}]; (this is the 352-plet)

in rep2 = BuildRep[{0,0,0,0,0,1}]; (this is the 32-plet)

in rep3 = BuildRep[{1,0,0,0,0,0}]; (this is the 12-plet)

in pic1 = PlotRep2D[rep1, CoxeterPlane, ShowMultiplicities->False, PointStyle->{0.0001, Red},
ShowAxes->False, LinkStyle->{Thickness[0.001], Black, Opacity[0.15]}];

in pic2=PlotRep2D[rep2, CoxeterPlane, ShowMultiplicities->False, PointStyle->{0.015, Black},
ShowAxes->False, LinkStyle->{Opacity[0.3], Thickness[0.0025], RGBColor[0,0,0.5]}];

in pic3=PlotRep2D[rep3, CoxeterPlane, ShowMultiplicities->False, PointStyle->{0.015, Black},
ShowAxes->False, LinkStyle->{Opacity[0.8], Thickness[0.003], RGBColor[0, 0.8, 0.5]}];

in Show[pic1, pic2, pic3];

out see title page.

Although this example is senseless from scientific point of view, but it demonstrate all main regimes of PlotRep-
commands.

IV. CONCLUSION

APPENDIX A: GELFAND-TSETLIN PATTERNS

The Gelfand-Tsetlin patterns (GT-patterns) enumerate the states within the given multiplet. The presented here
variant is the short compilation of some results the articles [3], rewritten in the form which is used in package.

1. SU(n) = An−1 type

The GT-pattern for the An−1 type of group has the form:

λn1 λn2 . . . . . . λnn

λn−1,1 λn−1,2 . . . λn−1,n−1

. . . . . . . . .
λ21 λ22

λ11

(A1)
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where number in every neighbor lines satisfies ”snake”-rule:

λk,1 > λk−1,1 > λk,2 > λk−1,2 > . . . > λk,k−1 > λk−1,k−1 > λk,k.

The first line is reproduces the usual Young-like notation of the representation. It can be obtained from the Dynkin
labels of the eldest weight as follows

(k1, k2, ..., kn−1) → [
n−1∑
j=1

kj ,
n−1∑
j=2

kj , ..., kn−2 + kn−1, kn−1, 0] = [λn1, λn2, . . . , λnn]. (A2)

In order to obtain the Dynkin indices for the state’s weight one has to multiply the vector of numbers (sum of every
line in pattern)

{v1, v2, . . . , vn} = {
n∑

i=1

λni,
n−1∑
i=1

λn−1,i, . . . , λ11},

by the (n− 1)× n Cartan-like matrix:

k1
k2
k3
...

kn−2

kn−1

 =



0 0 0 . . . 0 −1 2
0 0 0 . . . −1 2 −1
0 0 0 . . . 2 −1 0
...

...
...

...
...

...
0 −1 2 . . . 0 0 0
−1 2 −1 . . . 0 0 0





v1
v2
v3
...

vn−1

vn

 .

Thus, one sees that states are degenerate if they vectors v coincides.
The GT-patterns by construction contains information about the decomposition of the SU(n) multiplet onto the

multiplets belonging to the groups of the chain SU(n) → SU(n−1) → SU(n−2) → .. . Among all states enumerated
by the pattern with the upper line λn all GT-patterns with the same (k+1) upper lines belongs to the same multiplet
of SU(n− k). The eldest weight of the corresponded multiplet can be found from the line λn−k.

2. SP (n) = Cn type

The GT patterns for the SP groups was introduced in ref. [? ]. Here for convenience we change the definition of

pattern: (λ
(′)
k,i)[? ] = (−λ

(′)
k,k−i+1)here.

The GT-pattern for the Cn groups has 2n lines:

λn1 λn2 λn3 . . . λnn

λ′
n1 λ′

n2 . . . . . . λ′
nn

λn−1,1 λn−1,2 . . . λn−1,n−1

λ′
n−1,1 . . . λ′

n−1,n−1

. . . . . . . . .
λ21 λ22

λ′
21 λ′

22

λ11

λ′
11

(A3)

where every λ > 0 and every two lines satisfies ”snake”-rule:

λk,1 > λ′
k,1 > λk,2 > λ′

k,2 > . . . > λk,k > λ′
k,k > 0,

λ′
k,1 > λk−1,1 > λ′

k,2 > λk−1,2 > . . . > λk−1,k−1 > λ′
k,k.

The upper line is the eldest weight of the representation in the canonical realization, alternatively it can be obtained
from the Dynkin labels by following relation:

(k1, k2, ..., kn) → [
n∑

j=1

kj ,
n∑

j=2

kj , ..., kn−1 + kn, kn] = [λn1, λn2, . . . , λnn]. (A4)
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In order to obtain the Dynkin indices for the state’s weight one has to multiply the vector of numbers (sum of every
line in pattern)

{v1, v′1, v2, . . . , v′n} = {
n∑

i=1

λni,
n∑

i=1

λ′
ni,

n−1∑
i=1

λn−1,i, . . . , λ
′
11},

by the n× (2n) matrix: 

k1
k2
k3
...

kn−1

kn

 =



−1 2 0 −2 1 0 0 · · · 0 0
0 0 −1 2 0 −2 1 · · · 0 0
0 0 0 0 −1 2 0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · 0 −2
0 0 0 0 0 0 0 · · · −1 2





v1
v′1
v2
...
vn
v′n

 .

The GT-patterns by construction contains information about the decomposition of the Cn multiplet onto the
multiplets belonging to the groups of the chain Cn → Cn−1 → Cn−2 → .. . Among all states enumerated by the
pattern with the upper line λn all GT-patterns with the same (2k + 1) upper lines belongs to the same multiplet of
Cn−k. The eldest weight of the corresponded multiplet can be found from the line λn−k.

3. SO(2n) = Dn type

The GT-pattern for the Dn groups has 2n− 1 lines:

λn1 λn2 . . . . . . λnn

λ′
n−1,1 λ′

n−1,2 . . . λ′
n−1,n−1

λn−1,1 . . . λn−1,n−1

. . . . . . . . .
λ21 λ22

λ′
11

λ11

(A5)

where every λ’s are simultaneously integers or half-integers, and every two lines satisfies ”snake”-rule:

λk,1 > λ′
k−1,1 > λk,2 > λ′

k−1,2 > . . . > λ′
k−1,k−1 > |λk,k| > 0.

λ′
k,1 > λk,1 > λ′

k,2 > λk,2 > . . . > λ′
k,k > |λk,k| > 0.

The upper line is the eldest weight of the representation in the canonical realization, alternatively it can be obtained
from the Dynkin labels by following relation:

(k1, k2, ..., kn) → [
n−2∑
j=1

kj +
kn−1 + kn

2
,

n−2∑
j=2

kj +
kn−1 + kn

2
, ...,

kn−1 + kn
2

,
kn − kn−1

2
] = [λn1, λn2, . . . , λnn].(A6)

In order to obtain the Dynkin indices for the state’s weight one has to multiply the vector of numbers

{v1, v′1, v2, v′2 . . . , v′n} = {
n∑

i=1

λni,
n−1∑
i=0

λ′
n−1,i,

n−1∑
i=1

λn−1,i,
n−2∑
i=0

λ′
n−2,i . . . , λ

′
11 + λ′

10, λ11, λ11},

where λ′
k,0 = min(λk+1,k+1, λk,k), by the n× (2n) matrix:

k1
k2
k3
...

kn−1

kn

 =



−1 2 0 −2 1 0 0 · · · 0 0 0 0
0 0 −1 2 0 −2 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · 0 −2 1 0
0 0 0 0 0 0 0 · · · −1 2 0 −2
0 0 0 0 0 0 0 · · · −1 2 −2 2





v1
v′1
v2
...
vn
v′n

 .
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The matrix is differs form those for C-case only by the last row.
The GT-patterns by construction contains information about the decomposition of the Dn multiplet onto the

multiplets belonging to the groups of the chain Dn → Dn−1 → Dn−2 → .. . Among all states enumerated by the
pattern with the upper line λn all GT-patterns with the same (2k + 1) upper lines belongs to the same multiplet of
Cn−k. The eldest weight of the corresponded multiplet can be found from the line λn−k.

4. SO(2n+ 1) = Bn type

The GT-pattern for the Bn groups has the form similar to Cn pattern but with addition column σ:

λn1 λn2 λn3 . . . λnn σn

λ′
n1 λ′

n2 . . . . . . λ′
nn

λn−1,1 λn−1,2 . . . λn−1,n−1 σn−1

λ′
n−1,1 . . . λ′

n−1,n−1

. . . . . . . . .
λ21 λ22 σ2

λ′
21 λ′

22

λ11 σ1

λ′
11

(A7)

where all λ simultaneously integers or half-integers, every σ is 0 or 1, and every two lines satisfies ”snake”-rule:

λk,1 > λ′
k,1 > λk,2 > λ′

k,2 > . . . > λk,k > λ′
k,k > [0 or σk] ,

λ′
k,1 > λk−1,1 > λ′

k,2 > λk−1,2 > . . . > λk−1,k−1 > λ′
k,k,

where in the first line one chouse 0 for half-integer λ’s, and σk for integer numbers.
The upper line is the eldest weight of the representation in the canonical realization, alternatively it can be obtained

from the Dynkin labels by following relation:

(k1, k2, ..., kn) → [
n−1∑
j=1

kj +
kn
2
,

n−1∑
j=2

kj +
kn
2
, ...,

kn
2
] = [λn1, λn2, . . . , λnn]. (A8)

In order to obtain the Dynkin indices for the state’s weight one has to multiply the vector of numbers (sum of every
line in pattern)

{v1, v′1, v2, . . . , v′n} = {
n∑

i=1

λni,

n∑
i=1

λ′
ni,

n−1∑
i=1

λn−1,i, . . . , λ
′
11},

by the n× (2n) matrix (the matrix differs from C only by the last row) and subtract vector of σ’s:

k1
k2
k3
...

kn−1

kn

 =



−1 2 0 −2 1 0 0 · · · 0 0
0 0 −1 2 0 −2 1 · · · 0 0
0 0 0 0 −1 2 0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · 0 −2
0 0 0 0 0 0 0 · · · −2 4





v1
v′1
v2
...
vn
v′n

−



σ1 − σ2

σ2 − σ3

σ3 − σ4

...
σn−1 − σn

2σn

 .

The GT-patterns by construction contains information about the decomposition of the Bn multiplet onto the
multiplets belonging to the groups of the chain Bn → Bn−1 → Bn−2 → .. . Among all states enumerated by the
pattern with the upper line λn all GT-patterns with the same (2k + 1) upper lines (do not taking into account the
σ-column) belongs to the same multiplet of Cn−k. The eldest weight of the corresponded multiplet can be found from
the line λn−k.
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TABLE II: Full list of commands in version 1.0
Command[variables] Usage of

global
variables

Description

SetGroup[NameOfAlgerbra] — Sets the global variables.
CartanMatrix[SimpleRoots] No Returns the Cartan matrix for the given set of simple

roots.
FundamentalWeight[SimpleRoots] No Returns the system of fundamental weights for the given

set of simple roots.
RootSystem[SimpleRoots] No Returns the complete system of roots for the

given system of simple roots, in the form
{{PositiveRoots},{NegativeRoots}}.

DynkinDiagram Yes Draw the affine Dynkin diagram for the group under
consideration.

CoxeterPlane Yes Returns two vectors (in numerical form), which define
the Coxeter plane in the roots space.

RepDimension[rep,opts___] Yes Returns the dimension of the group representation speci-
fied by argument. The argument can be Dynkin labels of
the eldest weight(default) or eldest weight, which is reg-
ulated by the option RepNotation. It is based on Weyl
formula (2.10)

BuildRep[rep,opts___] Yes Returns the weight diagram for the group rep-
resentation specified by argument, in the form
{{{weight},degeneracy},...}. The argument can be
Dynkin labels of the eldest weight(default) or eldest
weight, which is regulated by the option RepNotation.
The algorithm is based on Freidantel formula (2.11).

Representation[rep,SimpleRoots,opts___] No Returns the weight diagram of the representation for
group with given set of simple roots. The representation
is specified by Dynkin indices of its eldest weight(default)
or eldest weight, which is regulated by the option
RepNotation. The algorithm is based on Freidantel for-
mula (2.11).

DynkinLabels[elem,SimpleRoots___]* Yes/No Transforms the element of weight space to Dynkin labels
with respect to the given simple roots. In the absence of
the second argument uses current set group.

Weight[elem,opts___]* Yes Transforms the element of weight space to weight vector.
PhysicalNormalizationMatrix[Group,Rank,opts___] No Returns the rotation-rescaling matrix for the weight

space from ”canonical” realization of [4] of the root sys-
tem to the physical notation (see sect.C).

PhysicalNormalization[elem,opts___]* Yes Rotates and normalizes the element of package from
”canonical” realization of [4] to the physical notation (see
sect.C).

RepProduct[Rep1,Rep2] No Returns the weight diagram for the Kronecker product of
two representations. The arguments are weight diagrams
of representations.

DecomposeRep[Rep,SystemOfRoots,opts___] No Decompose given multiplet with respect to the given
roots. Returns the list of Dynkin indices for eldest
weights of sub-multiplets. For details see sect.D.

CGDecomposition[Rep1,Rep2__,opts___] Yes Decompose the direct product of representations over ir-
reducible representations. Returns the list of Dynkin in-
dices for eldest weights of irreducible representations. For
details see sect.D.

CGCoefficients[rep1,rep2__,opts___] Yes Returns the Clebsch-Gordan coefficients. Works only
with SU (A) group. For details see sect.E.

PlotRep2D[Rep,Plane,opts___] Yes/No Plot the projection of the given weight diagram onto the
plane defined by two vectors. For details see sect.F.

PlotRep3D[Rep,Space,opts___] Yes/No Plot the projection of the given weight diagram onto the
3D space defined by three vectors. For details see sect.F.

* Argument can be weight, list of weights or weight diagram. The command would act onto successful part of expression.
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TABLE III: Full list of options used by commands

Option name Applying
commands

Format Description

RepNotation RepDimension

BuildRep

"DynkinLabels"(default) The notation of representation is Dynkin labels of
its eldest weight.

Representation "EldestWeight" The notation of representation is its eldest weight.
InputMethod CGDecomposition

PhysicalNorma

-lization

"DynkinLabels" The input multiplet weights are presented in
Dynkin labels. This variant is default for
CGDecomposition and Weight.

Weight "Weights" The input multiplet weights are presented in
canonical realization. This variant is default for
PhysicalNormalization.

"GTPatterns" Only for Weight. The input weights are presented
in the Gelfand-Tsetlin patterns. Available only if
the set group is simple-classical group.

OutputMethod BuildRep

Representation

"DynkinLabels"(default) The weights in the output presented by their
Dynkin indices.

"Weights" The weights in the output presented by coordi-
nates in the weight space. The realization of the
weight space is fixed by ”NormalizationMethod”
option, by definition "Canonical" is used.

"GTPatterns" Only for BuildRep. The output states are pre-
sented as Gelfand-Tsetlin patterns. Available
only if the set group is simple-classical group.

OutputMethod CGCoefficients "Tables"(default) "List"

"None"

see sect. F for descriptions.

NormalizationMethod PhysicalNorma

-lization

PhysicalNorma

-lizationMatrix

"Coxeter" The normalization of roots is
∑

α≻0 α · α =
h
2
, where h is Coxeter number. This vari-

ant is default for PhysicalNormalization and
PhysicalNormalizationMatrix.

BuildRep "Unity" The normalization of roots is
∑

α≻0 α ·α = 1
Representation "Half" The normalization of roots is

∑
α≻0 α ·α = 1

2

"Canonical" The ”canonical” realization of roots by [4].
This variant is default for BuildRep and
Representation.

OnlyRep CGCoefficients {Dynkin indeces} The CG coefficients calculates only for represen-
tation specified by ToRep. See sect.F for details.

LinksList PlotRep2D

PlotRep3D

{any weights} The list of links to show on the weight diagram.
By default PositiveRoots.

ShowMultiplicities PlotRep2D

PlotRep3D

True(default)/False In the case of ”True” subscribes the multiplicities
on weight diagram.

ShowLinks PlotRep2D

PlotRep3D

True(default)/False In the case of ”True” draws the edges specified by
LinksList on weight diagram.

ShowAxes PlotRep2D

PlotRep3D

True(def.2D)/False(def.3D) In the case of ”True” draws on the weight diagram
the vectors given by the second argument.

PointStyle LinkStyle

MultiplicitiesStyle

AxesStyle

PlotRep2D

PlotRep3D

See sect.G Set styles for drawing the elements of weight
diagram.


