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This note are made in order to fix signs and solutions, and not forget about Landau pole. On the
base of these note the AlphaStrong.m is build.

I. EVOLUTION EQUATION ON as

The QCD coupling is defined as

as =
g2

(4π)2
.

In the following we often drop subscript s. The evolution equation reads

µ2 das
dµ2

= −β0a
2
s − β1a

3
s − β2a

4
s − .... , (1.1)

where

β0 =
11

3
CA −

2Nf
3

> 0, (1.2)

β1 = 102− 38Nf
3

(1.3)

β2 =
2857

2
− 5033Nf

18
+

325N2
f

54
. (1.4)

We also would introduce the following notation

Bi =
βi
β0
, B0 = 1. (1.5)

We define ΛQCD as the position of Landau pole, i.e.

as(µ
2 > Λ2) > 0, as(µ

2 → Λ2)→ +∞.

We do not care about smaller values of Λ.

II. LO SOLUTION

LO solution is simple and exact

as(µ) =
1

β0 ln
(
µ2

Λ2

) =
1

z
. (2.1)

I.e.

z = β0 ln

(
µ2

Λ2

)

III. NLO SOLUTION

The NLO solution is already not so simple, therefore, often people use approximate solutions, see [1, 2]. The exact
solution reads

a(2)
s (µ) = − 1

B1

(
1 +W−1

[
− exp

(
− z

B1
− 1

)])−1

, (3.1)
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where W−1 is the Lambert function.
There are exists to approximation to this solution. One is called iterative [1]

a
(2)
it (µ) =

1

z +B1 ln
(

1 + z
B1

) . (3.2)

This solution works reasonably bad. The second iteration gives

a
(2)
it2(µ) =

1

z +B1 ln
(

1 + z
B1

+ ln
(

1 + z
B1

)) , (3.3)

which works even better.
Another solution is the high-energy solution [3]

a
(2)
HEP (µ) =

1

z

(
1− B1

z
ln

(
z

β0

))
. (3.4)

This solution is much smoother at µ→ Λ.
The deviations of solutions are given in the table (here Nf = 3)

µ
Λ a

(2)
s ∆a

(2)
it ∆a

(2)
it2 ∆a

(2)
HEP

1.5 0.064 -26% -7.5% -156 %

2 0.044 -15% -3.4% -47 %

4 0.026 -6.8% -1.05% -8.3 %

10 0.017 -3.6% -0.39% -1.65 %

100 0.0097 -1.38% -0.089% 0.062 %

1000 0.0068 -0.75% -0.035% 0.093 %

One can see that the HEP solution is rather bad at low scale, by better then first iteration at higher energy. The
second iteration is much better then both.

IV. NNLO SOLUTION

The solution at NNLO cannot be found in exact form.1 However one can easily invert it numerically.

1 We have

z =

∫
ρ2dρ

(ρ+ q1)(ρ+ q2)
=

1

q1 − q2

∫
ρdρ

(
q1

ρ+ q1
−

q2

ρ+ q2

)
, (4.1)

where ρ = a−1 and

q1 =
1

2

(
B1 +

√
B2

1 − 4B2

)
, q2 =

1

2

(
B1 −

√
B2

1 − 4B2

)
, B2 =

β2

β0
. (4.2)

Note, that B2
1 − 4B2 < 0, therefore, these roots are complex conjugated to each other. Integrating we present this equation in the

convenient form

q1

(
z − ρ+ q1 ln

(
ρ

q1
+ 1

))
= q2

(
z − ρ+ q2 ln

(
ρ

q2
+ 1

))
, (4.3)

where we add an arbitrary constant such that ρ(z → 0) → 0. A solution of this transcendental equation is unknown. Let us solve an
auxiliary equation

qi

(
z − ρ+ qi ln

(
ρ

qi
+ 1

))
= y. (4.4)

ρi = −qi
(

1 +W∓1

(
− exp

(
y

q2i
−
z

qi
− 1

)))
, (4.5)
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To invert the equation we use the formula

ρ = z +
B1

2
ln

(
1 +

B1

B2
ρ+

ρ2

B2

)
− B2

1 − 2B2√
4B2 −B2

1

Arctg

(√
4B2 −B1ρ

2B2 +B1ρ

)
(4.10)

Then we easily found the iteractive solution

a
(3)
it (µ) =

[
z +

B1

2
ln

(
1 +

B1

B2
z +

z2

B2

)
− B2

1 − 2B2√
4B2 −B2

1

Arctg

(√
4B2 −B1z

2B2 +B1z

)]−1

. (4.11)

The second iteration is easily deduced from this expression, but length to write.
The high-energy solution reads

a
(3)
HEP (µ) = a

(2)
HEP (µ) +

1

z3

(
B2

1

(
ln2

(
z

β0

)
− ln

(
z

β0

)
− 1

)
+B2

)
. (4.12)

In the next table we give comparison of these solutions

µ
Λ a

(3)
s (exact) ∆a

(3)
it ∆a

(3)
it2 ∆a

(3)
HEP

1.5 0.050 -45.3% -14.5% -400 %

2 0.037 -24.4% -6.0% -91.7 %

4 0.023 -10.0% -1.65% -28.5 %

10 0.0161 -5.00% -0.58% -16.2 %

100 0.0093 -1.796% -0.120% -8.13 %

1000 0.0066 -0.95% -0.045% -5.48 %

Here one can see that HEP solution is much worse then iterative, even at very high energy. Double iterative solution
is the best. The triple iterative solution improve accuracy by another factor 10.

where index is −1 for the first solution and +1 for the second. Compare it with the NLO solution. Next one should find such y that
both solution equal each other. Since ρ1 = (ρ2)∗, one can restrict the y the the following equation (for z > 0)

Im(ρ1(y)) = 0. (4.6)

We cannot find y exactly but iteratively it is given by a rapidly convergent series:

y = y0 + zY + z2
Y 2

2B2
2

(
B2 −B1Y + Y 2

)
(4.7)

+z3
Y 3

3B2
2

(
1−

5

2

B1

B2
Y +

3

2

B2
1 + 2B2

B2
2

Y 2 −
7

2

B1

B2
2

Y 3 +
2

B2
2

Y 4

)
+ ... ,

where y0 is the solution of equation

ImW−1

(
− exp

(
y0 − ρ21
ρ21

))
= −

√
4B2 −B2

1

B1

(
1 + ReW−1

(
− exp

(
y0 − ρ21
ρ21

)))
, (4.8)

and

Y =
B1

2

(
1 + ReW−1

(
− exp

(
y0 − ρ21
ρ21

)))−1

.

Equation for y0 can be solved numerically. We found for Nf = 3

y0 ' −5.1791×B2, Y '
B1

2
× 0.52386. (4.9)

And
y ' B2

(
−5.17905 + 0.002604z + 0.00029z2 + 4× 10−6z3 + 6× 10−8z4

)
,

so the series is super convergent. HOWEVER, It is not very practical solution because one should change the sheets of W
function with energy. Much more precise is to invert the equation numerically.
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V. RESULT FOR Λ

We have used the normalization point µ = MZ = 91.19 GeV, where as is given by (from MSTW2008nnlo)

as(MZ) = 0.00931613. (5.1)

Fixing this expression we define ΛQCD. The thresholds are passed as following

as(Nf ,mf ) = as(Nf + 1,mf ). (5.2)

There are two thresholds to pass mb = 4.75 and mc = 1.4 with Nf = 5→ 4 and Nf = 4→ 3 correspondingly.
We took two solutions double-iterative (that is very close to exact) and HEP (as a standard solution) we obtain

the following numbers (in GeV) (superscript is the number-of-loops within solution)

µ Λ
(1)
it2 Λ

(2)
it2 Λ

(3)
it2 Λ

(1)
HEP Λ

(2)
HEP Λ

(3)
HEP

as(MZ) = 0.00931613

µ > mb 0.083 0.230 0.274 0.083 0.215 0.198

mb > µ > mc 0.115 0.324 0.409 0.115 0.313 0.278

mc > µ 0.138 0.379 0.481 0.138 0.363 0.320

as(1) 0.028 0.0351 0.378 0.028 0.0397 0.0364

as(1) = 0.0358711

mc > µ 0.213 0.389 0.460 0.213 0.330 0.315

The pre-last line is expression for as(1 GeV), that should be compared with the same expression from MSTW2008
package. The last line is the Λ obtained from the normalization at 1 GeV.

One can see that both solutions are rather stable. The HEP solution is a bit more consist with check at 1 GeV,
which is probably refers to the fact that it is used in MSTW package.
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