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Abstract

The detailed investigation of logarithmical structure of perturbative expansion for

Effective Field Theories (EFTs) is presented. It is shown that in massless EFTs

the Leading Logarithm (LLog) coefficients satisfy a non-linear recursive equation,

which is the consequence of loop-graph topology and the structure of R-operation.

The suggested equation is an alternative to the well-known renorm-group equation

and an effective instrument for the investigation of perturbative expansion at all

orders. Also we show that for theories with Lint = O(ϕ4) this recursive equation is

a consequence of unitarity, analyticity and crossing symmetry. With the help of the

suggested methods the leading chiral contribution to parton distributions for pions

is obtained and investigated. This contribution plays an important role at small-xBj

and/or large-b⊥ domain of parton distributions.





Abstrakt

Es wird eine detaillierte Untersuchung logarithmischer Strukturen der pertubativen

Expansion für effektive Feldtheorien (EFTs) dargestellt. Es wird gezeigt, dass in mas-

selosen EFT die Koeffizienten der führenden Logarithmen (engl. Leading Logarithm)

einer nicht linearen rekursiven Gleichung genügen, was eine Konsequenz von loop-

graph Topologie und der Struktur der R-Operation ist. Die vorgestellte Gleichung

ist eine Alternative zu der bekannten Renormierungsgruppengleichung und ein effek-

tives Instrument zur Untersuchung der perturbativen Expansion in jeder Ordnung.

Zuden zeigen wir, dass diese Rekursivgleichung für Theorien mit Lint = O(ϕ4) eine

Konsequenz von Unitarität, Analyzität und Crossingsymmetrie ist. Mit Hilfe der

vorgestellten Methoden erhält und untersucht man den führenden chiralen Beitrag

zu Partondistributionen für Pionen. Dieser Beitrag spielt eine wichtige Rolle bei

kleinem xBj und/oder der großen b⊥ Domäne der Partondistributionen.
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Introduction

Effective field theories (EFTs) were introduced ref.[1]. Still there are many unsolved

questions related to EFTs. One of these questions is the possibility to compute the

higher order terms of the perturbative expansion and the possibility (and also ne-

cessity) of their resummation. The present thesis is consecrated on this question,

namely, the investigation of the logarithmical terms in the EFT perturbative expan-

sion and the significance of the leading logarithm resummation in some tasks of the

particle physics.

The investigation of the perturbative expansion is directly related to the applica-

tion of the renormalization operation. The renormalization operation consists in the

sequential redefinition of the theory constituents. Coupling constants, masses and

fields absorb the divergences of the loop integrals that appear during the perturbative

calculations. The renormalization procedure divides quantum field theories onto two

types – renormalizable and non-renormalizable theories. The distinction between

these two types consists in the operator structure of the counterterms (terms which

contain the divergences and are subtracted from the bare Lagrangian). For the renor-

malizable theories the operator structure of the counterterms repeats the structure

of the bare Lagrangian, in contrast to the non-renormalizable ones. Therefore, in the

non-renormalizable theories one has to introduce new types of interactions and new

parameters1. This process is uncontrollable in the sense that all new parameters have

to be determined experimentally and added to the perturbative expansion. Every

next order of the calculation gives more additional parameters, and so on.

The EFTs are, usually, non-renormalizable theories. But in fact a proper EFT

derived from the fundamental theory (such as quantum chromodynamic (QCD))

by integrating over the appropriate degrees of freedom is already finite, because all

divergences were taken into account in the ”parent” theory. Therefore, one can make

the calculation and the renormalization in the EFT in the same manner as in a usual

renormalizable theory.

In the particle physics the most popular EFTs are theories that describe the

low energy interaction of hadrons. The derivation of such EFTs from the QCD is a

very difficult task, which has never been done (except the lowest order terms, see e.g.

1We tractate the theory, which needs the addition of finite number of terms, as renormalizable
one, although some authors define it as non-renormalizable.
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[2],[3]). Therefore, one has to construct an EFT Lagrangian starting from the general

idea of hadron interaction and to determine the low energy constants experimentally.

The general method for the construction of an EFT was suggested in the seventies [1].

The main idea was to employ the general properties of the physical quantities, such

as analyticity and symmetries. As it is shown in [1], ”the most general possible S-

matrix consistent with perturbative unitarity, analyticity, cluster decomposition and

assumed symmetry principles” follows from ”the most general possible Lagrangian

with assumed symmetry principles”.

The most general possible Lagrangian contains an infinite number of operators

and every operator comes with its own coupling constant. One has to introduce

some hierarchy of the couplings in order to perform the systematical perturbation

expansion. The natural choice of the expansion parameter is E/Λ, where E is the

characteristic energy of the process, and Λ is the lowest dimension coupling constant

(note that in the non-renormalizable field theory the coupling constants are dimen-

sional). Obviously, the higher dimension terms of the Lagrangian contribute to the

higher order of the momentum expansion. Therefore, the calculation of the given

order of the momentum expansion requires a finite number of the Lagrangian terms.

The scheme of the selection of the Lagrangian terms and diagrams, which contribute

to the given order of the momentum expansion, is called Weinberg counting scheme

[1].

The number of the parameters in the Lagrangian increases from order to order.

As an example, we take the chiral perturbation theory (ChPT). The ChPT is one of

the most popular, investigated and powerful EFT nowadays (for a modern review see

[5],[6]), and we will often appeal to it in the text. ChPT describes the dynamics of

the light bosons (pions, kaons, eta-meson), as a dynamic of the Goldstone bosons of

the spontaneously broken chiral symmetry. The leading order Lagrangian of ChPT

contains one coupling [7], [8], namely Fπ ≈ 93 MeV — the pion decay constant. The

next-to-leading order of the Lagrangian (and hence the next-to-leading order of the

momentum expansion) contains 10 parameters. This order of the chiral expansion

allows one to make predictions for form factors, amplitudes, and other quantities

up to E ∼ 300 − 400 MeV within several percent accuracy, e.g. [9],[10]. But the

next-to-next-to-leading order Lagrangian contains already 90 parameters [11]. And

one can not find enough independent observables to fix all parameters.

The usage of the Weinberg counting scheme gives good enough results for the

low energy behavior of amplitudes, but the orderliness of the Weinber scheme can be

broken in the presence of another, except the energy E, scale. An example of such a

situation is the series of the chiral corrections to the partonic distribution functions.

In this case an additional scale parameter – the light cone distance – appears. The

additional scale parameter spoils the usual momentum expansion counting scheme

since the momentum order of some terms can be compensated by the light cone
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distance. Therefore, one has to perform a detailed investigation of the perturbative

series in order to extract the leading terms. Often, one needs to sum up some part

of the whole perturbative series in order to obtain the leading behavior.

It is well-known that the perturbative expansion in the renormalizable theory

can be partially resumed. The summation is going over the powers of logarithms,

which appear at every order of the expansion. These logarithmical contributions

are strongly related to each other and to the renormalization procedure. Using

the renormalization group (RG) technique one can obtain the logarithmical series

without a direct calculation of every term. In particular, the leading logarithmical

contribution can be obtained with only an one-loop calculation, the next-to-leading

logarithmical contribution can be obtained with a two-loop calculation, and so on.

The logarithmical expansion in an EFT also makes sense, since the number of the

parameters at a given order of the logarithmical expansion is the same as in the same

order of the momentum expansion. For example, the leading logarithmical approxi-

mation depends on the parameters of the lowest order Lagrangian only, although it

contains all orders of the momentum expansion. In the contrast to renormalizable

theories, the logarithmical terms can not compete with the regular power terms of

the usual perturbative expansion even in the deep infra-red (IR) region. However, in

the case of the broken order of perturbative expansion they can be very important.

The usual methods of RG, which were used in the renormalizable theories, do not

apply to the case of the non-renormalizable theories without modifications. The first

application of RG in the EFT was done by Weinberg [4], who calculated the double

logarithm coefficient of the ππ scattering amplitude using one-loop calculations and

renorminvariance principle. The RG principles at a finite order of expansion were

used in many papers in order to check the calculations and for the predictions of

double logarithm structures, e.g. [12],[13]. The complete formulation of the applica-

tion of RG to EFTs at any order was developed by Buchler and Colangelo [14]. As

one of the results, they showed that the leading logarithm behavior of the perturba-

tive expansion is given by the one-loop renormalization of the complete Lagrangian.

However, the problem of the calculation of the one-loop counterterms to all order

Lagrangian is very difficult since it contains an infinite number of terms. In the

recent papers by Bijnens and Carloni [15],[16] the five-loop leading logarithm coef-

ficients for the different objects in the massive O(N) σ-model were found using the

technique described in ref. [14].

There were many attempts to use other ways to describe the leading logarithm

behavior of non-renormalizable theories. Here we list some of them. One of the

popular ideas is to build formally renormalizable constructions in EFT and with their

help to find the required behavior, e.g. [17], [18]. The leading logarithmical structure

can be simplified using some specifics of Lagrangian symmetries, e.g. Lagrangians

with O(N) symmetry at large-N [19],[20], supersymmetrical Lagrangians [21]. One
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can use the dispersion relations and crossing symmetry [22]. Practically, none of

these methods is universal or can be used at higher orders.

The main aim of this thesis is to derive the method for obtaining the leading

logarithm behavior of amplitudes in a massless EFT. The massless EFTs have simpler

properties than the massive ones; nevertheless, they have all main features of an EFT

and often appear in the applications. Particulary, we investigate the massless EFTs

with the lowest order interaction term build up of four fields. Since these types

of EFTs are the most frequently used, we will call them as EFTs with ϕ4-type of

interaction.

The second aim of the thesis is to apply the leading logarithm summation to the

investigation of the meson partonic functions, and solve the problem of the breaking

down of their chiral expansion [23]. The singular contributions, which appear during

the evaluation of the parton distributions in ChPT, prohibit the usage of the finite

order of the chiral expansion and have to be resummed. The singular terms dominate

in the region of low x, and their resumed expression gives the important information

about the hadron structure, such as asymptotic behavior in the impact parameter

space, relative contribution of the pion cloud to the hadron.

In chapter I, we review the structure of the perturbative expansion in the EFT

and the Weinberg counting scheme. We discuss the structure of the R-operation in

the non-renormalizable theories and its connection with the new operators appear-

ing in the theory. We also review the basics of the dimension regularization and

the renorminvariance principle. Finally, we review the main statements of the RG

approach to EFT [14].

Chapter II is devoted to the method of obtaining the leading logarithm to all

orders based on the renorminvariance principle. First, the properties of the massless

EFTs are discussed. In the massless EFT some hierarchy of the graphs with respect

to their contribution to the logarithm structure is present. This hierarchy simplifies

the picture dramatically and together with the renorminvariance allows one to write

the non-linear recursive equation for the leading logarithm coefficients of the 4-point

amplitude. The kernel of the equation is the one-loop beta-function, which has to be

calculated for all order Lagrangian. We build the all-order effective Lagrangian for

the case of the O(N + 1)/O(N) σ-model and calculate the required beta-function.

After this we investigate the equation from both numerical and analytical points of

view. The obtained coefficients of the 4-point amplitude are used as parameters in

the recursive equations on the leading logarithm behavior of other quantities such

as form factors and 6-point amplitudes, which are also considered in this chapter.

Also, we present the set of necessary expressions (equations, beta-functions) for

SU(N)×SU(N) σ-model and matrix model. The main results of the second chapter

are published in refs. [24] and [25]. The presented method is quite general and can

be used for any massless theory regardless to its interaction structure.
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In chapter III, the alternative approach of obtaining the leading logarithm co-

efficients using the unitarity and crossing symmetry is described. Results of this

approach are equivalent to the results obtained in chapter II. The form of the equa-

tions and the calculation of their kernel are easier than in the direct loop-calculation

method, but the range of applicability of this dispersion approach is narrower. For

example, it can not be applied to the theories with cubic interaction or to the Green

functions. Using this method we obtain the recursive equations for the 4-point am-

plitude and the form factor in the theory with an arbitrary global symmetry. We

find that the one-loop beta-functions in the theory with leading ϕ4 interaction has

the universal form in terms of crossing matrices. This result connects the concepts

of the renormalization group and the analytical properties of the amplitude. The

expression for the beta-functions is also valid for the renormalizable theories. The

calculation of the crossing matrices is much simpler than the calculation of the loop

integrals. As in chapter II, we illustrate the application of the method considering

O(N +1)/O(N) and SU(N)×SU(N) σ-models. Also, we present the generalization

of the equation for the case of an arbitrary D-dimension and for the case of mixed

renormalizable-non-renormalizable interactions. The main results of this chapter are

published in [26].

In chapter IV, we apply the methods obtained in the previous chapters to the

calculation of the singular chiral corrections to the pionic parton distributions (PDFs

and GPDs). We remind the reader the basics of the application of EFT to the deep

inelastic processes and explain the source of the singular contributions. After this we

make the calculation of the required terms and perform their summation. Finally, we

discuss the properties of the obtained results and their influence on our understanding

of the hadron structure. The main results of this chapter are published in [27] and

[28].



I

Basics of effective field theories

In the present chapter we review the basics of EFTs and introduce necessary nota-

tions and definitions. We start with the description of the general EFT Lagrangian

with scalar fields and the Weinberg counting rule and then discuss the structure of

the perturbation expansion in EFTs. We also discuss the structure of the renor-

malization procedure and its influence on the structure of the perturbation series.

After that we discuss the renormalization group equations (RGE) in EFTs and their

connection with the infrared logarithms of the theory.

I.1 Structure of the perturbation expansion in EFT

The Lagrangian of an EFT contains all possible operators with the assumed symme-

try. It is impossible to take into consideration all possible operators simultaneously,

because for that one has to determine all parameters of the Lagrangian. In order to

perform the self-consistent perturbative expansion one has to fix the small parame-

ter of the expansion. In the Weinberg counting scheme [1], the external kinematical

variables play the role of small parameters. It is assumed that all external momenta

and masses of particles are much less then the scale of EFT breaking, pi,mi ≪ ΛEFT .

Therefore, the Lagrangian can be represented as the following sum

L = L2 + L4 + L6 + ... , (I.1-1)

where each Ln contains only the terms with the n-th power of momenta variables,

i.e. ∂n, mn etc. Note, that in exp. (I.1-1) we do not write the odd-index terms,

because in the thesis we discuss only EFTs with boson fields. The terms with odd

power of momenta are possible, but they accompany fermion fields.

Every order of the Lagrangian can contain an infinite number of the terms with

6



Structure of the perturbation expansion in EFT 7

a different number of the fields1:

L = −1

2
ϕ(∂2 −m2)ϕ+ g

(4)
1 ϕ2∂2ϕ2 + g

(6)
1 ϕ4∂2ϕ2 + ...︸ ︷︷ ︸

L2

(I.1-2)

+ g
(2)
2 ϕ∂4ϕ+ g

(4)
2,0ϕ

2∂4ϕ2 + g
(4)
2,2(ϕ∂µ∂νϕ)

2 + ...︸ ︷︷ ︸
L4

+... ,

where the coefficients g are coupling constants of operators. Through the whole

text we use the universal notation for coupling constants. We denote the coupling

constant of the operator with k fields from L2n by g
(k)
n . In order to distinguish

between different terms with k fields in L2n, we add an auxiliary lower index to the

couplings, e.g. the last two term of L4 in exp. (I.1-2). Often, we omit the auxiliary

index in order to concentrate on the general properties of an EFT.

There are two important remarks on the EFT Lagrangians in the form (I.1-2).

First, the coupling constants of the same order Lagrangian are not independent.

The symmetries of the theory imply the relations between them (see the example of

ChPT below). But since we will mainly consider the topology of graphs, it is more

convenient to denote the coupling for every term separately. Second, the propagator

of the particle is given by L2. 2-field terms of the higher order Lagrangians should

not be added to the propagator. They form the set of 2-vertices, which have to be

taken into account as usual vertices. This approach is unusual for the renormalizable

theories and is related to the structure of the renormalization, as it will be discussed

below.

The canonical momentum dimension of the coupling g
(k)
n is

[
g(k)n

]
= D − kD − 2

2
− 2n, (I.1-3)

where D is the number of space-time dimensions and D−2
2

is the dimension of the field

ϕ. Therefore, at D > 4 all couplings have a negative momentum dimension. The

only exception is g
(4)
0 at D = 4, this case satisfies the usual renormalizable ϕ4-theory.

Let us consider the matrix element of a process involving Nϕ external particles

ϕ. Its momentum dimension is

[M] = D −Nϕ
D − 2

2
. (I.1-4)

The lowest order term of the matrix element momentum expansion is given by the

tree diagrams with the interaction vertices from L2. The higher order of the expan-

1In the thesis we consider only Lagrangians with even number of fields. Some statements are
correct only in this class of EFTs. In particular, this allows us to use compact notations, which
is not possible in the theory with any number of fields. However, many results obtained for these
Lagrangians can be generalized on a wider class of Lagrangians, see chapter II section 7.
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sion is given by the loop- and tree- graphs including couplings from the higher order

Lagrangians.

The diagram which contributes to the matrix element (I.1-4), has the following

momentum order, or the power of energy scale,

[E] =
∑
p

pNp − 2Ni +DNl,

where Np is the number of vertices with p derivatives, Ni is the number of the internal

propagators and Nl is the number of the loops in the graph. Taking into account the

dependence between the number of loops, lines and vertices in an arbitrary graph:

Nl = Ni −
∑
p

Np + 1,

one obtains the power of the energy scale of the diagram in the form

[E] =
∑
p

(p− 2)Np + (D − 2)Nl + 2. (I.1-5)

The momentum dimension of the diagram is compensated to the dimension of the ma-

trix element (I.1-4) by Nv =
∑

pNp dimensional constants (I.1-3) of the Lagrangian

(I.1-2). The overall dimension of the couplings in the graph is

[
∑

g] = [M]− [E] =
D − 2

2

(
2− 2Nl −Nϕ

)
−
∑
k

(k − 2)Nk. (I.1-6)

Therefore, the number of diagrams which contribute to the given order of the mo-

mentum expansion, is finite. These diagrams contain only the coupling constants

with [g] 6 [
∑
g]. It is important to note one exceptional case: if a Lagrangian

contains the dimensionless coupling, i.e. g
(4)
0(D=4), this coupling can contribute an

arbitrary number of times to the given order of [E].

Consequently, the momentum expansion of the matrix element has the form

M =
∞∑
n=0

gNvEnfn(E, pi,mi), (I.1-7)

where gNv is the product of different couplings with the overall momentum dimension

(I.1-6), E is the dimensional expansion parameter, f is a dimensionless function of

its arguments.

The ultraviolet (UV) regularization and renormalization of loop-diagrams add

the dependence on the renormalization point µ into the function f . Functionally,

the parameter µ appears only as the argument of logarithms. This is the consequence

of the counterterms locality, see e.g. [29], [30]. Generically, a diagram with Nl loops
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can produce ln(µ) in different powers, but not higher than the number of loops Nl.

Therefore, one can rewrite exp. (I.1-7) in the form

M =
∞∑
n=0

En

Nl max(n)∑
m=0

gNv lnm
( µ
E

)
fn,m(E, pi,mi), (I.1-8)

where Nl max(n) is the maximum number of loops in diagrams of En order and f is

a dimensionless function of its variables.

At the given order of the momentum expansion, the number of loops can not

exceed the number dictated by eqn. (I.1-5). The maximum number of loops is

reached when all vertices in the diagram are of the lowest dimension, i.e. from L2 (if

L2 contains interaction terms). Thus, at the given order of the momentum expansion

the maximum power of ln(µ) is multiplied only by the constants from the lowest order

Lagrangian:

M =
∞∑
n=0

En
[
gNv
1 lnNl max−1

( µ
E

)
fn,Nl max

(E, pi,mi) + ...
]
. (I.1-9)

These terms of the matrix element will be called the leading logarithms (LLogs), i.e.

the terms with the maximum power of logarithms at the given order of perturbative

expansion. The next-to-leading logarithms (NLLog) are the terms with the next-to-

leading power in the expansion term. The dependence of the LLog terms only on

the coupling constants of L2 means that in principle one can obtain the LLog terms

at all orders of momentum using only L2 part of the Lagrangian (I.1-2).

I.2 The renormalization

The renormalization procedure consists in the successive subtraction of UV diver-

gences from the Lagrangian parameters. The order of operations is the following.

First of all, one introduces the regularization and explicitly extracts UV divergences

from the loop-integrals. Secondly, one redefines the couplings constants, masses,

and fields in such a way that all divergences at the given order of the perturbative

expansion disappear. Thirdly, one takes off the regularization and obtains the finite

expression. The details of the renormalization procedure can be found in many text-

books, e.g. [30],[32]. In this section we discuss only several points needed for the

future explanations and the features of the renormalization of EFTs.

In the thesis we are going to use the dimensional regularization, which is the

most simple and investigated method of the regularization of the UV divergences in

the loop calculation. The main idea of the dimensional regularization consists in the

analytical continuation of the multi-dimensional gaussian integral, which is the basis

of the loop-calculation, to the D-dimension space, where D is a non-integer number.
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Therefore, the singularities of Feynman diagrams in the dimensional regularization

are represented by inverse powers of ε. After the R-operation, D is turned to its

physical value. We use the usual definition D = D0 − 2ε, where D0 is the canonical

dimension of space.

At the same time the momentum dimension of the couplings in the dimensional

regularization is kept fixed. In order to have the correct dimension of the Lagrangian

one introduces the scale µ2 in such a power that compensates the change of the

space-time dimension. The momentum dimension of the coupling constant is given

by (I.1-3) with D = D0. The dimension of the operator with k fields from the 2n-th

order of the Lagrangian is

[L(k)
2n ] = k[ϕ] + 2n+ [g(k)n ] + [Compensation] = D.

Therefore, in the dimensional regularization every coupling constant is transformed

as

g(k)n

dim.reg.−−−−→ µ(D0−D) k−2
2 g(k)n = µε(k−2)g(k)n . (I.2-10)

Other types of regularizations, e.g. cut or Pauli-Villars, introduce the dimensional

parameter as a regulator, and they do not need any additional scale.

The substraction procedure consists in the selection of such additional terms

to the Lagrangian parameters, called counterterms, that the additional diagrams

generated by the added terms cancel the divergences. This redefinition of parameters

is universal in the sense that the redefinition of the finite set of parameters make any

matrix element finite. Practically, one usually renormalizes diagrams ”in the air”

canceling the divergences by the recursive method and calculating the counterterms

to the coupling separately.

The main difference of the renormalizable and non-renormalizable theories is in

the structure of the counterterm Lagrangian. In the renormalizable theory the loop

correction to the Lagrangian term has the same operator structure as the term itself

L(g0) ∼ Lct(g0),

where sign ∼ means the operator equivalence. In the pure non-renormalizable theory

the loop-correction to the Lagrangian term produces the operator structure of the

higher order Lagrangians. Therefore, the counterterm Lagrangian of n-th order

contains the parameters of the lower order Lagrangians

L2n(gn) ∼ L2n,ct(g1, g2, ..., gn−1).

Some technical details of the renormalization procedure are presented in the next

section.
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Note that no new terms are added to the Lagrangian (I.1-1) since we assume that

EFT contains all possible terms by definition. This is the ”psychological” difference

between ”just” non-renormalizable theories and EFTs. However, the construction

of the counterterm Lagrangian can be used as a way to find the higher order La-

grangians. It is also possible that the counterterm Lagrangian does not contain all

terms of the Lagrangian at the given order.

The renormalized coupling constants depend on the parameter µ, which was in-

troduced during the regularization. This dependence remains after the taking off

the regularization. Therefore, the result of the calculation at the finite order of the

perturbative expansion depends on the regularization procedure. However, the ex-

pression for the complete perturbation expansion, which contains an infinite number

of terms, does not depend on µ. This property is called the renormalization group

invariance (RG invariance). The RG invariance can be proven for the renormalizable

theories, e.g. [29], and has not been proven for non-renormalizable ones. But since

one assumes that EFT is the consequence of some fundamental renormalizable QFT,

one can also assume that EFT is RG invariant.

I.3 Chiral Perturbation theory

ChPT is the most popular EFT for the description of the low energy hadron inter-

action. It is based on the idea that the chiral symmetry, which is approximately

presented in the QCD Lagrangian, SUL(3) × SUR(3) is spontaneously broken to

the SU(3)V [33]. The Goldstone bosons related to the spontaneously broken SU(3)

symmetry are pions, kaons and eta-meson. Their non-zero mass appears due to the

small explicit breaking of the chiral symmetry by the presence of the quark masses.

Therefore, it is assumed that by integrating the quark and gluon degrees of freedom

of the QCD partition function one can represent the partition function as

Z(v, a, s, p) =

∫
Dq̄ DqDAei

∫
dxLQCD(q̄,q,A) =

∫
DUei

∫
dxLChPT (U),

where v (a, s, p) are vector (axial, scalar, pseudo-scalar) currents, and U is the field

of Goldstone bosons.

The Lagrangian of ChPT was constructed in [7] and [34] for the cases of SU(2)

and SU(3) symmetries respectively. The lowest order Lagrangian has the form

L2 =
F 2

2
tr
[
∂µU

†∂µU +m2(U + U †)
]
, (I.3-11)

where U is the unitary matrix constructed from the Goldstone fields. In exp. (I.3-

11) we have omitted the current terms and consider the SU(2) ChPT version for

simplicity. The usual representation for the matrix U is U = exp[iπaσa] where σa
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is a generator of the SU(2) group and πa is the pion field. It is the only possible

Lagrangian with SU(2)V symmetry of dimension 2.

The coupling constant F is the pion decay constant Fπ ≃ 93 MeV. Thus, one can

estimate a validation window of the theory as E2 ≪ (4πFπ)
2 ≃ 1.36 GeV2, where

the factor (4π)2 is the usual perturbative multiplicator of the expansion parameter.

However, this value is not correct, because a new physical effects arise much earlier

on the energy scale. The realistic upper energy boundary for ChPT application is

E ∼ 300 MeV2.

The tree order calculation with the Lagrangian (I.3-11) gives the first term of

the momentum expression ∼ E2. The correction to this term is given by one-loop

diagrams with vertices from L2 (I.3-11). According to the momentum counting (I.1-

5) these diagrams produce the term of order E4. Therefore, the divergences of these

diagrams have to be compensated by the counterterms of L4. The counterterm

Lagrangian has the form [34]

Lct
4 =

1

(4π)2
1

ε

[1
3
tr(∂µU

†∂µU)2 +
2

3
tr(∂µU

†∂νU)tr(∂
µU †∂νU) (I.3-12)

+
3

2
m4tr(U)2 + 2m2tr(U)tr(∂µU

†∂µU)
]
,

where ε is a parameter of the dimensional regularization.

The symmetry consideration gives the next order Lagrangian in the form [34]

L4 =
l1
4
tr(∂µU

†∂µU)2 +
l2
4
tr(∂µU

†∂νU)tr(∂
µU †∂νU) (I.3-13)

+
l3
4
m4tr(U)2 − l4

2
m2tr(U)tr(∂µU

†∂µU)
]
.

One can see that the operator contents of Lagrangians (I.3-12) and (I.3-13) coincide.

Thus, the renormalized constants of L4 have the form

li = lri + γiλ, γ1 =
1

3
, γ2 =

2

3
, γ3 = −

1

2
, γ4 = 2, (I.3-14)

where

λ =
µ−2ε

(4π)2

(1
ε
+ Scheme constant

)
.

Note, that here we present only a part of L4. The complete Lagrangian (I.3-13) con-

tains 10 operator structures and, hence, 10 different coupling constants. Moreover,

some of the operators have no counterterms, i.e. they are not presented in Lct
4 and

can be restored only by the symmetry consideration.

The loop calculation with the ChPT Lagrangian takes place in terms of particle

fields, i.e. πa. Expanding the matrix U around πa = 0, U = 1+iλaπ
a

F
− 1

2
(λaπa)2

F 2 + ... ,
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Figure I-1: The examples of graphs contributing to the renormalization of g
(4)
3 . The

numbers correspond to the index of the corresponding vertex constant.

one obtains the Lagrangians (I.3-11), (I.3-13) in the form (I.1-2):

L2 = −
1

2
πa(∂2 +m2)πa − 1

8F 2
π2(∂2 +m2)π2 +O(π6) (I.3-15)

L4 = −1

2

m2

F 2
(l4π

a∂2πa + l3π
2) +

l1
F 4

(∂µπ
a∂µπ

a)2 +
l2
F 4

(∂µπ
a∂νπ

a)2(I.3-16)

+
l3m

4

2F 4

(
π2
)2

+
l4m

2

F 4

(
π2∂µπ

a∂µπ
a − 1

2
∂µπ

a∂µπ
2

)
+O(π6)

From the comparison of these two expressions with exp. (I.1-2) one sees that in our

notation the coupling 1
F 2 = g

(4)
1 , l1(2)

F 4 = g
(4)
2,1(2) and so on. The higher field coupling

constants g
(k>4)
1(2) are expressed only thorough the g

(4)
1(2) due to the chiral symmetry.

The two-loop contribution of L2 diverges quadratically and has the momentum

dimension 6, (I.1-5). At the same chiral order one has one-loop diagrams, which

are composed of one vertex from L4 and one vertex from L2. These two classes of

diagrams have the same counterterm operator structure. For example, schematically,

the renormalization of the coupling g
(4)
3 has the form

g
(4)
3 ∼ g

(4)r
3 + (g

(4)
1 )3

( 1

ε2
+

1

ε

)
+ g

(4)
1 g

(4)
2

1

ε
+ (g

(4)
1 )2g

(2)
2

1

ε
(I.3-17)

+g
(8)
1

( 1

ε2
+

1

ε

)
+ g

(6)
2

1

ε
.

Examples of the graphs, which correspond to each term of eqn. (I.3-17), are shown

in fig.I.1. The one-loop diagrams with two constants from L4 have dimension 8 and

such diagrams can be renormalized using L8, and so on. Note, that due to the global

Lagrangian symmetries g
(8)
1 = (g

(4)
1 )3 and g

(6)
2 = g

(4)
1 g

(4)
2 .

ChPT has many extensions, e.g. baryons chiral perturbation theory [35], [36],

ChPT with vector particles [37], unitarized ChPT [38]. There are also a lot of

detailed reviews on different aspects of ChPT, e.g [5],[39], [40].
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I.4 Renormalization group equations

The RG invariance is the property of the complete perturbative expansion. Consid-

eration of this property allows one to fix some terms of the perturbative series at

all orders. This can be done with the help of the renormalization group equations

(RGEs). The RGEs are the standard tool for the renormalizable theories, see e.g.

[32]. In the non-renormalizable theories the application of the RGEs is much more

difficult. The first application of RGE in an EFT was made by Weinberg [1], who

found the LLog coefficient at p6-order of the ππ-scattering amplitude using only the

one-loop calculations. Since that time, large research effort was devoted to RGE in

the non-renormalizable EFTs. The first complete method of building RGE based on

the RG invariance principle was proposed in ref [14]. The main idea is to demand

the RG invariance not for the whole Lagrangian, but separately for every operator

structure at every order of the quantum correction. This consideration leads to the

infinite set of deferential equations on the run of the couplings.

The bare Lagrangian of the n-th order contains the renormalized Lagrangian and

its counterterm Lagrangian. Both structures can be expanded in the minimal basis

of independent operators O(k)
ni :

Ln =
∞∑
k=2

µε(k−2)
Mn∑
C=0

g
(k)
nCO

(k)
nC , (I.4-18)

where Mn is the number of the operators in the basis at the given order. The

main difference between the renormalizable and non-renormalizable theories in such

approach2 is the n-behavior of Mn. Mn is an increasing function of n for non-

renormalizable theories and constant for renormalizable ones.

The RGE follows from the requirement that every bare Lagrangian (I.4-18) is RG

invariant, hence

0 = µ2dLn
dµ2

(I.4-19)

=
∑
k

µε(k−2)

{
ε(k − 2)

(
L(k)
n +

n∑
j=1

A
(k)
nj

εj

)
+ µ2dL

(k)
n

dµ2
+

n∑
j=1

µ2 d

dµ2

A
(k)
nj

εj

}
.

2To be precise one should consider the quantum corrections of the Lagrangian around the solution

L =
∞∑

n=0

~nLn.

However, this specification is needed only for the renormalizable theories, since for the pure non-
renormalizable theories the quantum expansion practically coincides with the momentum expansion
(I.1-1).
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The µ-dependance of the Lagrangian is described by its β-functions

µ2dL
(k)
n

dµ2
= B(k)

n − ε
(k − 2)

2
L(k)
n . (I.4-20)

One of the main statements of the R-operation for the renormalizable theories is

that B contains no singularities. Therefore, we demand the absence of singularities

for the EFT β-functions also. By definition, B consists of the same operators as the

Lagrangian (I.4-18)

B(k)
n =

Mn∑
C=0

β
(k)
nCO

(k)
nC , (I.4-21)

where β denotes beta-functions of the corresponding couplings. Thus, eqn. (I.4-18)

and eqn. (I.4-20) give together

µ2dg
(k)
nC

dµ2
= β

(k)
nC − ε

(k − 2)

2
g
(k)
nC . (I.4-22)

This is RGE for the couplings. In the non-renormalizable theories it has exactly

the same form as in the renormalizable theories, the only difference is that in the

non-renormalizable theories the number of RGEs is finite. Note, that since in our

notation the most part of g’s are related to each other, their β functions are also not

independent.

The Green function G calculated from the RG invariant Lagrangian is also RG

invariant, which leads to the following relation

0 = µ2 d

dµ2
G = µ2 ∂G

∂µ2
− ĤG, (I.4-23)

where the operator Ĥ is

Ĥ = −
∑
n,k,C

β
(k)
nC

∂

∂g
(k)
nC

, (I.4-24)

where the minus sign is put for the future convince. The formal solution of eqn.

(I.4-23) is

G(µ2, g(µ2)) = exp
[
ln
(µ2

µ2
0

)
Ĥ
]
G(µ2

0, g(µ
2
0)), (I.4-25)

where µ0 is the normalization point. At the normalization point the couplings are

defined exactly, i.e. their quantum corrections are zero and one can use their exper-

imental values. The Green function at this point is given by the sum of all possible

tree diagrams. It is very important for the self-consistence that all couplings must
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be defined at the same scale µ0.

Eqn. (I.4-23) is an analog of the Callan-Symanzik equation for the renormalizable

theories [41]. In contrast to the Callan-Symanzik equation, eqn. (I.4-23) contains

no anomalous dimensions of fields, since we did not introduce the renormalization

of the field itself. The field renormalization procedure is replaced by introducing the

infinite set of the two-field operators with the dimensional constants, g(2). The µ-

evolution of g(2) constants is equivalent to the presence of the anomalous dimension

in the usual form of the Callan-Symanzik equation. Thus, the tree diagrams with

2-vertices have to be presented in the Green function at the normalization point µ0

on the same ground as others tree diagrams.

In the original paper [14] the authors describe several properties of the operator

Ĥ. In the next chapter we obtain these properties using another technique and

notations.

Accounting of the RG invariance (I.4-25) corresponds to the all order resumma-

tion of the logarithmic contributions. It turns out that the LLogs in any field theory

can be obtained only through the one-loop calculation, the NLLogs can be obtained

through the two-loop calculation and so on. Under the term ”one-loop calculation”

we understand the calculation of the one-loop counterterm to the whole Lagrangian

with an infinite number of terms. On the other hand, LLogs appear only in the

diagrams with initial Lagrangian vertices, see eqn. (I.1-9). This does not mean that

the knowledge of the lowest order Lagrangian is enough for the determination of the

complete one-loop counterterm. The lowest order Lagrangian gives only the informa-

tion on the highest pole counterterm. The calculation of the one-loop counterterm

to the whole Lagrangian seems an absolutely impossible task, just as the calculation

of the n-loop diagram in a non-renormalizable theory. However, it can be done in a

wide class of theories, as it will be shown in the next chapter.

Although the calculations of the µ-dependence and, particulary, LLog behavior

seems to be very similar in EFTs and in fundamental theories, the physical meaning

of it is completely different. In the fundamental theories the µ-dependentce defines

the run of the amplitudes in the whole region of the perturbation expansion. In

principle, the running of the coupling defines the region of the expansion by itself.

The well-known example is the asymptotical freedom, which is a consequence of RGE

and it says that the perturbative expansion is valid in the region of large energies.

The coupling in the renormalizable theories always runs as ∼ ln−1 µ2, therefore, the

LLogs dominate in the perturbative expansion, and the expansion over them is well-

founded. In an EFT the perturbative expansion is valid only in the narrow region.

The run of the couplings is very complex, usually, they run as a positive power of

logarithms. So, the extraction of one or another term from the perturbation series

has to be validated separately for every case. The example of the extraction of the

dominant terms connected with the external operator structure and the kinematic
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specifics, will be shown in chapter IV. The only selected case is a massless EFT. In

the absence of masses the expansion over the LLog terms gives the IR asymptotic

behavior of the given order of the expansion. The absence of other dimensional

parameters except momenta and µ2 allows one to identify the renormalization group

logarithms as the IR logarithms.



II

Leading Logarithm in massless

EFT

A massless EFT is the simplest case for the analysis of the logarithm structure.

The absence of masses in the theory grants many simplifications. Some of these

simplifications allow one to find the relations between the LLog coefficients at all

orders. This relations has a form of recursive equations. First time the equation was

obtained for the ππ scattering amplitude in the EFT for the massless pions, built as

the O(N + 1)/O(N) σ-model, in [24]. Later the same method was employed for the

calculation of LLog behavior of pion form factors [25].

In the present chapter we develop and demonstrate the method of calculation

of LLogs at all orders in a massless EFT. As an example of an massless EFT we

use the O(N + 1)/O(N) σ-model. First, we demonstrate the features of massless

EFTs and the structure of its perturbative expansion. After that we obtain the

recursive equation for LLog coefficients in the 4-point amplitude. We also derive

the corresponding equations for the 6-point amplitude and for form factors. The

presented method is also applied to the theories with other symmetries, in particular,

to the massless ChPT and matrix model. Finally, we discuss methods of the solution

of the obtained equations.

II.1 Property of a massless theory

In the renormalizable theories only some selected types of the diagrams diverge.

The renormalization of these limited types of diagrams makes the theory finite.

In contrast, in the non-renormalizable theories all types of the diagrams diverge.

However, in the exceptional case of the massless theory some classes of the graphs

18
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Figure II-1: The graph which gives the dressing of the propagator at 2-loops level,
and its counterterm. The back blob denotes the counterterm vertex.

diverge weaker. This is a consequence of the fact that all diagrams with the massless

tadpole subgraph are zero in the dimensional regularization1.

To begin with, let us consider an example of the graph which does not contain

the LLog term in the massless EFT. We take the graph which describes the dressing

of the propagator in the ϕ4-type EFT. The lowest contribution to the propagator

dressing is of 2-loop order. The contribution is given by the only diagram shown in

fig.II.1. From the naive consideration, the expression for the diagram should be of

the form p6

ε2

(
µ2

p2

)2ε
f(ε), and, therefore, ln2(µ2) should appear in the finite part. But

the direct computation shows that this diagram has only ε−1 pole and, hence, has

no LLog contribution.

The absence of the leading pole in the graph in fig.II.1 can be described through

the considering of the topology of graphs which perform the renormalization proce-

dure. According to the rules of R′-operation, for the renormalization of the graph one

has to compute the diagram with a drawn out loop. Then one subtracts it from the

original graph. R′ operation eliminates the non-localities (logarithms) in the diver-

gent part and allows one to perform the renormalization procedure by the appropriate

redefinition of the couplings of the corresponding local operators. Schematically, the

expression for the diagram in fig.II.1 after the R′-operation can by written in the

following way

p6

ε2

(µ2

p2

)2ε
f(ε)− A

ε

p6

ε

(µ2

p2

)ε
f1(ε) = p6

(f(0)− Af1(0)
ε2

+
2f ′(0)− Af ′1(0)

ε
+Finite part

)
,

where A is a renormalization constant of the 4-vertex. However, the single subtracted

diagram for this graph has the tadpole topology (fig.II.1). Thus, the counterterm

to the graph (fig.II.1) is equal to zero in the massless theory. Therefore, there is no

subtraction term for the rigorous renormalization procedure. On the other hand the

R-operation is well defined and counterterms to the local operators have to be local.

The only possibility to satisfy this requirement for the diagram is to make it diverge

as ε−1, which confirms by the direct calculation.

Let us find the correlation between the graph topology and the graph power

1The final results of the section are independent of the regularization scheme, which is shown in
the chapter III.
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of divergence in the general form. We will use the recursive definition of the R′-

operations (for the detailed description see e.g. [32],[30]) and the assumption that

the resulting counterterm for the graph is local.

For the renormalization of a Nl-loop diagram one has to subtract from the dia-

gram all possible subgraphs one by one. Note that in contrast to a renormalizable

theory the diagrams in EFT do not contain subdivergences, i.e. every loop diverges

at every order of subtraction. The subtraction of a loop in a graph generates a new

(Nl−1)-loop graph. The pole part of the subtracted graph has to be added to the ex-

pression of the initial graph with the appropriate sign. This operation eliminates the

non-locality from the subleading singular term (∼ εNl−1) (the leading singular term

εNl is always local). In order to eliminate the non-localities from sub-subleading sin-

gularity one has to make the subtraction on the subtracted graph and add the result

to the initial graph. Repeating this procedure until the tree level of the subtraction

one obtains the local expression for the pole part of the diagram.

The set of all subgraphs to the graph forms an ordered graph space. For the

complete R′-operation one has to pass through all possible paths in this space from

the initial Nl-loop graph to the tree graph. Here it is convenient to introduce the

notion of the subtraction length. The subtraction length is the number of possible

graphs in a path without allowing steps on which tadpoles are subtracted, and also

the initial graph is not taken into account. In these terms one can formulate the

following rule: if for a Nl-loop diagram the maximum subtraction path length is ls,

then this diagram diverges as ε−ls . It can be proven in the following way. At the ns-

th step of the subtraction procedure one erases the non-locality from the ε−(Nl−ns)-th

term of the initial graph. If some of the counter graphs do not exist (in any path

of renormalization) the R′-operation leaves the non-local singular part, or the total

divergence is less by unity. Thus, if (Nl − ls) counterterms do not exist, the total

divergence is less or equal to ls.

Let us consider a one-particle irreducible(1PI) graph GNl,n with Nl loops and n

vertices. Let Wk denotes the operation of the one loop subtraction, where the loop

passes through (k + 1) vertices. Wk acting on a graph transforms it into the graph

with the lower number of loops and vertices:

WkGNl,n 7→ GNl−1,n−k.

Note, that the subtraction of a tadpole subgraph is W0. Passing through the full

path of the subtractions one obtains the local vertex diagram G0,1:

Wk1Wk2 ..WklGNl,n = G0,1,

Nl∑
i=1

ki = n− 1. (II.1-1)

If there is no tadpole subtraction in the path (II.1-1), i.e. ki ̸= 0 and
∑Nl

i=1 ki > Nl,
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then the diagram GNl,n contains the leading singularity and the LLog part. On the

other hand the number of loops in the graph is given by

Nl =
∑
j≥2

(j
2
− 1
)
nj −

Nϕ

2
+ 1, (II.1-2)

where Nϕ is the number of external lines and nj is the number of the vertices with j

incoming lines. Combining exp. (II.1-1) and eqn. (II.1-2) one obtains the following

inequality

Nϕ

2
− 2 >

∑
j>2

(j
2
− 2
)
nj. (II.1-3)

This inequality gives the constraint on the classes of graphs that contain LLog con-

tribution in the massless EFT. The particular examples of eqn. (II.1-3) application

are given below:

• Nϕ = 2, the dressing of the propagator can not give the LLogs (exceptional

case is the presence of the 3-vertices, which we do not consider now);

• Nϕ = 4, the 4-point amplitude can contain the LLogs only if nj>4 = 0, i.e. only

4-vertices are in the graph;

• Nϕ = 6, the 6-point amplitude can contain the LLogs only if n6 6 1 and

nj>6 = 0.

Thus, for the consideration of a 4-point Green function at the LLog accuracy, one

needs only the 4-field part of the Lagrangian, which is infinitely smaller then the full

Lagrangian.

The diagrams which contain the NLLogs contribution, satisfy the inequality

Nϕ

2
− 1 >

∑
j>2

(j
2
− 2
)
nj. (II.1-4)

In particular cases it gives:

• Nϕ = 2, the dressing of propagator can contain the NLLogs only if nj>4 = 0.

• Nϕ = 4, the 4-point amplitude can contain the NLLogs only if n6 6 1 and

nj>6 = 0.

and so on.

II.2 O(N + 1)/O(N) σ-model

As an example of an EFT we will often use the O(N + 1)/O(N) σ-model at D = 4.

This is a simple non-renormalizable model with several advantages. The Lagrangian
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of the model has the form

L2 =
1

2

[
∂µσ∂

µσ + ∂µπ
a∂µπa

]
, (II.2-5)

where the fields lie on the surface of SN+1, i.e. σ2 +
∑N

a=1 π
aπa = F 2. Integrating

out the σ-field one obtains the Lagrangian in the form (I.1-2)

L2 = −
1

2
πa∂2πa − 1

8F 2
π2∂2π2 − 1

16F 4
π4∂2π2 +O(π8). (II.2-6)

This model contains all main features of an usual EFT, e.g. the dimensional coupling

and the infinity row of the interaction terms with increasing number of fields even at

the lowest order of the theory. Also this model has several advantages listed below.

• At N = 3, Lagrangian (II.2-5) is equivalent to the massless Weinberg La-

grangian [1], or to the massless two-flavor ChPT [34](compare with exp. (I.3-

11)). The LLog structure of these theories is known up to the 2-loop order for

the 4-point amplitude [42].

• At N = 1, the model (II.2-5) is a free field theory. Therefore, all corrections

disappear. This feature can be used as a check in our future calculations.

• The model (II.2-5) has known solution at the large N limit, e.g. see refs. [44],

[45]. This will provide the check for our calculations and allow us to access the

accuracy of the 1/N expansion without tedious calculations.

The general structure of the higher order Lagrangians is the same as in ChPT,

as it was discussed in section 1.2. Namely, due to the absence of masses, the only

dimension bearers in the Lagrangian are derivatives. According to our convention of

the notations we denote the lowest couplings from (II.2-6) as

g10 =
1

F 2
, g

(6)
10 = (g10)

2 =
1

F 4
, and so on. (II.2-7)

Here we have omitted the upper index for the 4-field operator couplings, and starting

from here we do it everywhere if it makes no confusion. Also we are not going to

write the auxiliary lower index until the place where it will have a sense.

Beta-functions Let us investigate RG-functions for the Lagrangian of the (II.2-

6)-type. As it was discussed in the chapter I the bare coupling has the form

g(k)baren = µε(k−2)
(
g(k)n (µ)− δZ(k)

n (g(µ))
)
, (II.2-8)

where δZ is the coefficient near the operator in the corresponding counterterm. δZ

contains the pole part of diagrams. For example, the first few terms δZ
(4)
n have the
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Figure II-2: The sample graph which contribute to the β
(4)
n , by the numbers the

generation of vertices are denoted.

form

δZ(4)
n = (II.2-9)

1

ε

n−1∑
i=1

βi,n−igign−i︸ ︷︷ ︸
1-loop

+
∑

i+j+k=n

(b2
ε2

+
b1,a1
ε

)
gigjgk +

∑
i+j=n−1

b1,a2
ε
g
(6)
i gj︸ ︷︷ ︸

2-loop

+... .

The sample of diagrams, from which these counterterms come from, is shown in

fig.II.2. Note that the last term in exp.(II.2-9), which corresponds to the last diagram

in fig.II.2, has only single pole contribution due to exp. (II.1-3). The β-function in

eqn. (I.4-22) is defined through the δZ as

β(k)
n = µ2dδZ

(k)
n

dµ2
+ εδZ(k)

n . (II.2-10)

The β-function has no singularities. Assuming the cancelation of the singularities in

eqn.(II.2-10) one obtains that the β-function is composed of the simple pole coeffi-

cients:

β(k)
n = −

∑
a

b1a

(k1 + k2 + ..+ kj − 2(j + 1)

2

)
{g(k1)i1

g
(k2)
i2

...g
(kj)
ij
}a , (II.2-11)

where a enumerates all possible monoms of g’s in δZ
(k)
n , b1a are coefficients near the

ϵ−1 in the structure a. The only constraint on the form of monoms is their momentum

dimension. The monom dimension has to be the same as the momentum dimension

of g
(k)
n . For example, from the consideration of eqn.(II.2-9) and eqn.(II.2-11) one

obtains the first few terms for the β-function of the coupling g
(4)
n

βn = −
n−1∑
i=1

βi,n−igign−i︸ ︷︷ ︸
1−loop

−2
∑

i+j+k=n

b1,a1gigjgk − 2
∑

i+j=n−1

b1,a2g
(6)
i gj︸ ︷︷ ︸

2-loop

+... . (II.2-12)

In contrast to the renormalizable theories, an EFT contains an infinite number
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of β-functions. But every β-function is made of a finite number of terms, since

(n− 1)-loop diagrams can contribute only to βk with k 6 n.

It is very convenient to introduce a general notation for all possible combinations

of couplings g with similar properties. We will use the notation from the theory of

sequences [52]. We denote all possible monoms of power j and total generation k

using the following form:

|g⟨j⟩|k =
∑

i1+i2+..+ij=k

g
(a)
i1
g
(b)
i2
...g

(c)
ij
, (II.2-13)

where the upper indices of g’s are not fixed. Every term in the sum (II.2-13) enters

with some uncontrolled number.

Using the notation (II.2-13), the expression for β
(4)
n can be represented in the

following form

β(4)
n = −

n−1∑
l=1

l−1∑
j=0

n−l+j−1∑
p=0

|g⟨l+1−j+p⟩|n−j, (II.2-14)

where every term in the sum has an independent numerical factor. This factor can

be found only from the direct loop calculation.

Let us explain the ingredients of exp. (II.2-14) and their origins in details. The

index l enumerates the number of loops in the graph contribution. The upper limit

for the sum over l is fixed by the following condition: to the counterterm of the g
(4)
n

only graphs with the number of loops less or equal to (n − 1) can contribute . The

extreme case is reached when the graph has only g(4) vertices. Such case corresponds

to the |g⟨l+1⟩|n–structure. Furthermore, one has to take into account the graphs with

the vertices with a higher number of incoming lines. For a fixed number of loops

such graphs have less vertices than those which contain only 4-vertices. The number

of vertices is less by j, where j is a
∑∞

j=4
(j−4)

2
nj, where nj is the number of vertices

with j incoming lines. On the other hand the total number of the interacting vertices

can not be less than 2, otherwise it would be a pure tadpole diagram. This condition

gives the restriction on the sum over j. The momentum dimension of the vertex with

a higher number of incoming legs is higher (I.1-3). Thus, we decrease the lower index

of the g-structure by j. Finally, one can add the g(2) vertices, which do not change

the loop-number of graph, but contribute to the total dimension of β-function alike

g(4). It happens because the g
(2)
n -vertex always comes into the graph together with

one propagator, so effectively it has the same dimension as g
(4)
n . In the sum (II.2-14)

the number of g(2)-vertices is regulated by the summation index p. The upper limit

of the sum over p is dictated by the constraint that the graph has to contain at least

two non-g(2)-vertices.

Analyzing in the same way the graphs with k-external lines one finds that the
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β-function for the constant g
(k)
n has the general form

β(k)
n = −

n−1∑
l=1

k
2
+l−3∑
j=0

∑
p

|g⟨
k
2
−j+l−1+p⟩|n+ k

2
−j−2 (II.2-15)

= −
n−1∑
l=1

k
2
+l−3∑
j=0

∑
p

|g⟨p+j+2⟩|n+j−l+1.

The β-function has the same momentum dimension as the coupling to which the

β-function relates. Thus, the dimensions of the coupling on the left-hand side of the

exp. (II.2-15) have to be chosen in the appropriate way. This can be done using the

upper indices of the couplings (II.2-13).

Considering the first generation of β-functions in the purely non-renormalizable

theory one can find that there are no couplings which can be combined into the

lowest dimension coupling. Consequently, from exp. (II.2-15) one has

β
(k)
1 = 0. (II.2-16)

Operator Ĥ and its properties The dimensionality of the couplings applies

several restrictions on the constructions of type (II.2-13):

• The maximum generation of the coupling that takes part in the |g⟨r⟩|α is (α−r+
1). This situation occurs only if all others couplings are of the first generation,

|g⟨r⟩|α = g1g1..g1︸ ︷︷ ︸
r−1

gα−r+1 + ... . (II.2-17)

• If the structure |g⟨r⟩|α has an momentum dimension d the maximum upper

index of the coupling can be only k = 4− d− 2α;

• If the ”power” and the total generation of the g-structure coincides, the g-

structure contains only the couplings of the first generation,

|g⟨r⟩|r = g
(a)
1 g

(b)
1 ..g

(c)
1︸ ︷︷ ︸

r

. (II.2-18)

• If the ”power” is more than the total generation, the g-structure is zero iden-

tically,

|g⟨r⟩|α = 0, r > α. (II.2-19)

The operator Ĥ is defined by exp.(I.4-24) together with exp. (II.2-15). Let us

consider the action of Ĥ on a structure of type (II.2-13). The differentiation over
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a coupling and multiplication on g-structure transforms the g-structure to another

g-structure in the following way

|g⟨r1⟩|α1

d

dgn
|g⟨r2⟩|α2 ∼ |g⟨r1+r2−1⟩|α1+α2−n, (II.2-20)

where under the sign ∼ the uncontrolled change of the numerical coefficients is

understood. Therefore, acting by Ĥ on a g-structure one has

Ĥ|g⟨r⟩|α ∼
α−r+1∑
n=2

∞∑
k=2,4..

n−1∑
l=1

k
2
+l−3∑
j=0

|g⟨j+p+r+1⟩|j−l+1+α. (II.2-21)

The upper limit of the summation over n is fixed by constraint (II.2-17).

The operator Ĥ is dimensionless, thus the energy dimension of the exp. (II.2-21)

is the same as the dimension of |g⟨r⟩|α. But the number of couplings on the right-

hand side of exp. (II.2-21) increases at least by one compared with the g-structure

on the left-hand side. Hence, the maximum possible generation and the maximum

possible upper index of the couplings is decreased according to constrain (II.2-17).

Acting a times by operator Ĥ on the g-structure one obtains

Ĥa|g⟨r⟩|α ∼ (II.2-22)

α−r+1∑
n1=2

n1−1∑
l1=1

α−r−l1+1∑
n2=2

n2−1∑
l2=1

...

α−r−
∑a−1

i=1 l+1∑
na=2

na−1∑
la=1

∑
ki,ji,pi

|g⟨
∑

i(ji+pi)+r+a⟩|∑
i(ji−li)+α+a,

where
∑

i =
∑a

i=1. The sum over na can be non zero only in the case when

α− r − 1 >
a−1∑
i=1

li > a− 1, (II.2-23)

where for the second inequality the constrain li > 1 was used. Hence

Ĥa|g⟨r⟩|α = 0, a > α− r. (II.2-24)

Generally speaking eqn. (II.2-24) is the conjecture of exp. (II.2-16). Every

application of the operator Ĥ increases the number of couplings in monoms keeping

the total energy dimension unchanged. At some point, all the couplings in the

expression are transformed into g1, and the next action of the Ĥ turns the expression

to zero according to exp. (II.2-16).

The maximum power of the Ĥ, which does not give the zero result in exp. (II.2-

22) is a = α − r. In this case all li have to be unities. In other words, in this case

one can leave only the one-loop part of the β-functions in the operator Ĥ, since the

appearance of any higher loop β-function gives the zero result. The g-structure on
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the right-hand side of exp. (II.2-22) for a = α− r is

|g⟨
∑

i(ji+pi)+α⟩|∑
i ji+α

.

According to exp. (II.2-19) all pi = 0, and from exp. (II.2-18) follows that

Ĥα−r|g⟨r⟩|α = Ĥα−r
1 |g⟨r⟩|α ∼ g

(a)
1 g

(b)
1 ...g

(c)
1 , (II.2-25)

where the operator Ĥ1 is the Ĥ with one-loop contributions only . Note that Ĥ1

does not contain the g(2) vertices insertions. Somehow, we can say that the diagrams

with p g(2) insertions have effectively (l + p) number of loops.

There is a very intuitive graphical interpretation of the action of the operator Ĥ1

on the graph. The operator Ĥ1 slides apart the graph vertex and inserts on its place

all possible one-loop subgraphs of the same dimension as the slided vertex. Thus, the

tree graphs of order n can be transformed to the (n−1)-loop graphs by acting of the

operator Ĥn−1
1 . In the next section solving the combinatorics of this transformation

we will find a simple relation between LLog coefficients at different loop orders.

The structures like (II.2-25) are needed for the investigation of the LLog behavior

of the diagram. For the consideration of NLLogs one has to consider eqn. (II.2-22)

with a = α − r − 1. The consideration of the constraints given by sums in exp.

(II.2-22) and the constraint (II.2-19), gives three possibilities to obtain a non-zero

answer, namely: when all li = 1 and pi = 0; when one of lj = 2 and li̸=j = 1, pi = 0;

when one of pj = 1, and li = 1, pi̸=j = 0. We denote by Ĥ2 the part of operator Ĥ

with l = 2, p = 0 or with l = 1, p = 1. Analogously to exp. (II.2-25) we write

Ĥα−r−1|g⟨r⟩|α =

(
Ĥα−r−1

1 +
α−r−1∑
j=1

Ĥj
1Ĥ2Ĥ

α−r−2−j
1

)
|g⟨r⟩|α. (II.2-26)

Thus, one has two completely different structures on the same logarithmical order

α−r−1∑
j=1

Ĥj
1Ĥ2Ĥ

α−r−2−j
1 |g⟨r⟩|α ∼ g

(a)
1 g

(b)
1 ...g

(c)
1 , (II.2-27)

Ĥα−r−1
1 |g⟨r⟩|α ∼ g

(a)
2 g

(b)
1 ...g

(c)
1 . (II.2-28)

In the next section we will discuss the connection between this structure and loga-

rithmical structure of the matrix element in details . Here we only note that these

two structures correspond to the different types of logarithm contributions. The

logarithms, which come from the term (II.2-27), will be called ”true” NLLog con-

tributions, because they correspond to the real next-to-leading contributions of the

(n − 1)-loop graphs at the n-th order of expansion. One has to make a two-loop

calculation in order to obtain ”true” NLLogs. The logarithms, which come from
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the term (II.2-28), will be called ”false” NLLog contributions, because they are the

leading contribution of (n− 2)-loop graphs at the n-th order of expansion.

The results of this section are general for any theory of ϕ4-type. The obtained

hierarchy, operator properties are based only on the counting of dimensions and on

the relation (II.2-16).

II.3 LLog for ππ scattering

Let us consider the 4-point amplitude in the O(N +1)/O(N) σ-model. We call it ππ

scattering because at N = 3 the model (II.2-6) coincides with the two-flavor ChPT,

which describes the pion interactions.

The g-structure of the n-th order of the chiral expansion for the ππ scattering

amplitude is similar to the β-function of the g
(4)
n (II.2-14). One has to add only

the tree diagram term, i.e. with l = 0 and j = l. The coefficient instead of every

g-structure contains all powers of lnµ2 less or equal to the number of loops, which

is enumerated by l index of summation. Combining together expressions (I.1-8) and

(II.2-14), and the explanations of section II.1 one obtains the general structure of

the 1PI graphs that describe the ππ scattering matrix element:

Mππ = ⟨πaπb|T |πcπd⟩ (II.3-29)

=
∞∑
n=1

E2n

n−1∑
l=0

l∑
j=0

n−l+j−1∑
p=0

|g⟨l+p+1−j⟩|n−j
l−j∑
m=0

lnm(µ2)fn,j,l,p(s, t),

where s and t are Mandelstam variables, f is a dimensionless function of its argu-

ments and T = i(S − I). We remind that this expansion is valid only in the region

s ∼ t≪ F 2.

The LLog terms in the amplitudeMππ are the terms proportional toE2n lnn−1(µ2).

According to exp. (II.2-18) and the power counting the LLog term is proportional

to (g
(4)
1 )n. The zero-loop contribution of the amplitude (II.3-29) consists of |g⟨1⟩|n,

which is simply g
(4)
n . In principle the tree diagrams with g(2)-vertices on the external

legs have to be presented in exp. (II.3-29). But these diagrams do not give a LLog

contribution, and we do not consider them.

In order to extract the LLog coefficient, one differentiates the coefficient near the

E2n in the amplitude (II.3-29) other ln(µ2) (n− 1)-times,

(
µ2 d

dµ2

)n−1 n−1∑
l=0

l∑
j=0

n−l+j−1∑
p=0

|g⟨l+p+1−j⟩|n−j
l−j∑
m=0

lnm(µ2)fn,j,l,p(s, t) (II.3-30)

= (n− 1)!fn,n−1(s, t)|g⟨n⟩|n = (n− 1)!fn,n−1(s, t)
(
g
(4)
1

)n
.

According to eqn. (I.4-23) the differentiating over lnµ2 is equivalent to the action
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of the operator Ĥ on the same coefficient. Using constraint (II.2-24) and relation

(II.2-25) one obtains

Ĥn−1
n−1∑
l=0

l∑
j=0

n−l+j−1∑
p=0

|g⟨l+p+1−j⟩|n−j
l−j∑
m=0

lnm(µ2)fn,j,l,p(s, t) (II.3-31)

= fn,0(s, t)Ĥ
n−1
1 |g⟨1⟩|n = fn,0(s, t)Ĥ

n−1
1 g(4)n .

The functions fn,0(s, t) in exp. (II.3-31) come directly from the pure 4-field part

of the Ln, i.e. it is the momentum representation of the Feynman rule for the 4-field

operators in Ln. The fn,0 can be expanded over some complete basis PC in the

momentum and group spaces. The coefficient of every term can be chosen as unities

with successful redefinition of the corresponding coupling, i.e.

fn,0(s, t)g
(4)
n =

∑
C

PC(s, t)g
(4)
nC . (II.3-32)

On the Lagrangian level this operation satisfies the expansion of the Ln onto the set

of the independent operators, see exp. (I.4-18). The expansion over the same basis

for exp. (II.3-30) has the form

fn,n−1
(
g
(4)
10

)n
=
∑
C

ωnC
(
g
(4)
10

)n
PC(s, t). (II.3-33)

The ωnC is the desired LLog coefficient. Since the basis PC is complete, one can

compare structures near every PC independently. From the equality of expressions

(II.3-30) and (II.3-31), follows that the LLog coefficients ωnC are

ωnC =

(
g
(4)
10

)−n
(n− 1)!

Ĥn−1
1 g

(4)
nC . (II.3-34)

The most right operator Ĥ1 in definition (II.3-34) acts only on the g
(4)
n , thus it

can be presented in the form (omitting the auxiliary index)

Ĥ1 =
n−1∑
i=1

βi,n−ig
(4)
i g

(4)
n−i

∂

∂g
(4)
n

, (II.3-35)

where βi,n−i is the coefficient near the pole in the left diagram in fig.II.2. And again

it contains only g(4) couplings, hence all Ĥ1 in definition (II.3-34) has the form of

(II.3-35).
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Figure II-3: The diagrams needed for the calculation of β(i, A;n− i, B/C).

Using the exp. (II.3-35) one can write the chain of equalities

ωn =
g−n1

(n− 1)!
Ĥn−2

1

n−1∑
i=1

βi,n−igign−i

=
g−n1

(n− 1)!

n−1∑
i=1

βi,n−i

n−2∑
k=0

(
n− 2

k

)[
Ĥk

1 gi

][
Ĥn−k−2

1 gn−i

]
.

Eqn. (II.2-24) constrains the summation other k to value k = i− 1 only. Using the

definition of ωnC in the right-hand side one obtains the recursive equation for the

LLog coefficient (we restore the auxiliary indices):

ωnC =
1

n− 1

n−1∑
i=1

∑
A,B

β(i, A;n− i, B/C)ωiAωn−i,B, (II.3-36)

where the β(i, A; , n− i, B/C) is the coefficient near PC/ε of the diagram in fig.II.3.

Eqn. (II.3-36) allows one to restore all coefficients ωnC starting from the initial

point. The natural initial value is ω1C – the coefficient near the PC structure at the

first order of the expansion. The constants g1C can be always redefined in such a

way that ω10 = 1, and all other constants are zero.

Eqn. (II.3-36) is a conjecture of the topological properties of one-loop graphs of

the theory. Therefore, its form is a general form of equation for the LLog coefficient

for the 4-point amplitude in the theory with leading ϕ4 interaction. The recursive

equation for the LLogs in renormalizable theories, see e.g. [29], are particular cases

of eqn. (II.3-36).

It is a non-linear recursive equation, and later we will show that it is equivalent

to a non-linear integral equation in form of Hammerstein. The regular method of its

solving does not exist. The perturbative approach, due to the non-linearity of the

equation, has an uncontrollable error and usually gives a very bad approximation.

On the other hand, eqn. (II.3-36) is easy and fast numerically solved , as it will be

discussed at the end of this chapter.

Higher order Lagrangian The next step is the calculation of the β(i, A;n −
i, B/C). It is given by the coefficient near the pole of diagrams shown in fig. II.3.
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Figure II-4: The notation of Feynman rule for the 4-π vertex. All momenta are
incoming.

The main problem is that the diagrams contain the 4-vertices from the arbitrary high

order Lagrangian, which is unknown. The idea of solving this problem is following:

since the values of higher order constants are out of interest, one can build the higher

order Lagrangian from all possible independent operators.

The initial Lagrangian (II.2-6) has only one operator with 4 pion fields

V1 =
g10
8
π2∂π2. (II.3-37)

The Feynman rule for vertex V1 has the form (the order of indices and momenta is

shown in fig.II.4)

V abcd
10 (k1, k2, k3, k4) = g10

[
δabδcd(k1 + k2)

2 + δacδbd(k1 + k3)
2 + δadδbc(p1 + p4)

2
]
.

Direct calculation of the V1 ∗V1 loop diagram shows that the pole coefficient contains

two types of structures: δabδcd(k1 + k2)
2 and δabδcd(k1 + k4)

2. All other structures

relate to these two by crossing transformations. Thus, the next order Lagrangian

has two independent vertex operators:

V2 =
g20
8
π2[∂2]2π2 +

g22
8
[πa∇µ∇νπ

a][πb∇µ∇νπ
b], ∇µ =

−→
∂µ −

←−
∂µ. (II.3-38)

For N = 3 case the couplings g20 and g22 are given by a known linear combination

of l1 and l2 from Lagrangian (I.3-13), see (I.3-16).

The next generation of operators follows from the consideration of the V2 ∗ V1
diagram and so on. At the n-th order the 4-field operators in the Lagrangian can be

presented in the form

Vn =
n∑

C=0,2,.

VnC =
n∑

C=0,2..

gnC
8

[πa∇µ1 ..∇µCπ
a](∂2)n−C [πb∇µ1 ..∇µCπ

b]. (II.3-39)

The expression (II.3-39) does not contain terms like ∂2πa because their Feynman

rule is proportional to p2 and gives zero contribution to the amplitude at the one-loop

level. In other words, these operators are proportional to the higher-field operators

due to the equation of motions for the massless Lagrangians of type-(II.2-6): ∂2πa ∼
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πaπ2. The index C obtains only even values since π-fields are boson fields.

Generally speaking, exp. (II.3-39) corresponds to all possible not forbidden in-

dependent compositions of the derivatives between four fields. This basis is very

inconvenient for the calculation. We found that it is useful to use as the basis the

following linear combination of operators (II.3-39):

V new
nC =

gnC
8

C∑
k=0,2,..

(−1)
C−k
2

Γ
(
C+k
2

+ 1
2

)
Γ
(
C−k
2

+ 1
) Vnk

Γ
(
k
2
+ 1

2

)
Γ
(
k
2
+ 1
) . (II.3-40)

The sum on the right-hand side is nothing else as the Legendre polynomial expansion.

Therefore we denote

V new
nC =

gnC
8
π2(∂2)nPC

(
∇1∇2

∂2

)
π2, (II.3-41)

where ∇1 acts only between the left pair of fields and ∇2 only between the right pair

of fields. Starting from here we will use only this operators as a basis, therefore, we

omit the label ”new”.

The Feynman rule for this operator is

V abcd
nC (k1, k2, k3, k4) = gnC

[
δabδcdAnC + δadδbcBnC + δacδbdCnC

]
, (II.3-42)

AnC = i(−1)n+1[(k1 + k2)
2]nPC

(
(k1 − k2) · (k3 − k4)

(k1 + k2)2

)
,

BnC = i(−1)n+1[(k1 + k4)
2]nPC

(
(k1 − k4) · (k2 − k3)

(k1 + k4)2

)
,

CnC = i(−1)n+1[(k1 + k3)
2]nPC

(
(k1 − k3) · (k2 − k4)

(k1 + k3)2

)
.

The basis of operators (II.3-41) is complete in the momentum space. We will use

it without any changes in all other EFTs of ϕ4-type with needed expansion of the

symmetry structures.

The amplitude (II.3-29) can be expanded on three structures of group indices (we

use the convention for ππ-scattering notation as in [46], [47])

M = δabδcdA(s, t, u) + δadδbcB(s, t, u) + δacδbdC(s, t, u), (II.3-43)

where the amplitudes A, B and C are related to each other by the crossing symmetry

B(s, t, u) = A(t, u, s), C(s, t, u) = A(u, s, t).
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The LLog part of the momenta expansion of the A(s, t, u) in the basis (II.3-42) has

the form

A(s, t, u) = (4π)2
∞∑
n=1

n∑
C=0

ŜnPC

(
1 +

2t

s

)
ωnC lnn−1

(
µ2

|s|

)
+O(NLLog),(II.3-44)

where Ŝ = s
(4πF )2

. Here, we put |s| in the argument of the logarithm just from

dimension reasons. The tree calculation with the lowest order Lagrangian gives

ω10 = 1.

We will often call A (B, C)-amplitudes just as s(t, u)-channel amplitudes, since

their arguments of the Legendre polynomials are cosines of the scattering angle in

s(t, u)-channels. Thus, the coefficient ωnC has a meaning of the LLog coefficient of

the n-chiral order expansion of tC(s) partial wave.

The calculation of β(i, A;n− i, B/C) The loop-contraction of two identical ver-

tices VnC in the corresponding channel is diagonal, i.e.

AiA ∗ An−i,B =

∫
dDl

AiA(p1, p2, l − P,−l)An−i,B(l, P − l, p3, p4)
l2(P − l)2

∼ 1

ε

δAB

2A+ 1
AnA.

(II.3-45)

The details of the calculation can be found in Appendix A.1. In some sense the

operators (II.3-41) are the one-loop representation of the 4-field conformal basis.

The one-loop convolution of A and B (or C)-structures is not so simple. Such

convolutions can be taken down to (II.3-45), using the completeness of the Legendre

polynomial basis. If the external legs of the graph (fig.II.3) are on the mass-shell one

can perform the expansion

BnA =
n∑

B=0

(−1)AΩAB
n AnB, (II.3-46)

CnA =
n∑

B=0

(−1)BΩAB
n AnB, (II.3-47)

where Ω is (A,B 6 n)

ΩAB
n =

(2B + 1)

2n+1

∫ 1

−1
dx PA

(
x+ 3

x− 1

)
(x− 1)nPB(x). (II.3-48)

Also we assume that ΩAB
n = 0, if A,B > n.

One can say that Ωn is a (n+ 1× n+ 1) matrix with a matrix element given by

exp. (II.3-48). If it makes no confusion we will use the matrix notation. The factors

(−1)A will be presented by the matrix U which is a diag{1,−1, 1, ..} matrix of the
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corresponding dimension. In such notations expressions (II.3-46) and (II.3-47) are

Bn = UΩnAn, Cn = ΩnUAn.

The matrix Ω is the crossing matrix in the space of the partial waves, i.e. it

transforms the coefficient near sn in expansion of the s-channel partial wave tl(s) to

the coefficient of the t−(or u−)channel partial wave. The crossing matrices Ω and

U satisfy the following properties

ΩnΩn = I, ΩnUΩn = UΩnU, (II.3-49)

where I is the unit matrix. Therefore, the set {I, UΩ, ΩU} forms a group of the

triangle rotation under the matrix multiplication, called C3-group. Other properties

of the Ωn and its explicit expression can be found in Appendix B.1.

Using the matrix Ω, one can expend the subamplitudes B and C in amplitude

(II.3-43) through s-channel partial waves:

B(s, t, u) = A(t, u, s) = (4π)2
∞∑
n=1

ŜnωnUΩnP

(
1 +

2t

s

)
lnn−1

(
µ2

|s|

)
+O(NLLog),

(II.3-50)

C(s, t, u) = A(u, s, t) = (4π)2
∞∑
n=1

ŜnωnΩnUP

(
1 +

2t

s

)
lnn−1

(
µ2

|s|

)
+O(NLLog).

(II.3-51)

Using these relations and basic integral (II.3-45) one obtains the β-function:

β(i, A;n− i, B/C) = (II.3-52)[
N

2

δABδAC
2C + 1

+
δACΩ

BA
n−i + δBCΩ

AB
i

2C + 1
+ 2

1 + (−1)C

2

min[i,n−i]∑
J=0

ΩAJ
i ΩBJ

n−iΩ
JC
n

2J + 1

]
.

The details of the calculation can be found in Appendix A.2.

The investigation of the equation Substituting β-function (II.3-52) into eqn.

(II.3-36) one can generate the coefficients ωnC up to an arbitrary order. The analyt-

ical solution of eqn. (II.3-36) has not been found yet. The numerical solution was

obtained using the package Mathematica 7.0. The calculation of the coefficients up

to 20-th order with arbitrary N takes dozen seconds on an average computer. At the

fixed N , the calculation is much faster. For example, the calculations of coefficients

up to 20-th order take ∼ 2 seconds, and up to 80-th order take about four minutes.

In table II.1 the first few values of the ωnC are listed. The one- and two-loop values

coincide with the values obtained by the explicit calculation performed in [46],[47].
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Table II-1: First few values of LLog coefficients ωnC in ππ scattering in the O(N +
1)/O(N) σ-model.
n \ C 0 2 4
1 1
2 N

2
− 17

18
1
9

3 N2

4
− 79N

144
+ 31

48
5N
144

+ 5
144

4 N3

8
− 2207N2

5400
+ 107137N

194400
− 80719

194400
131N2

15120
+ 131N

7776
− 1189

272160
N2

700
− 29N

10800
+ 361

75600

5
N4

16
− 1313N3

5400
+ 3547363N2

7776000

−1723427N
3888000

+ 46531
172800

83N3

40320
+ 823N2

67200

− 200903N
10886400

+ 91849
2177280

N3

1120
− 9089N2

6048000

+ 143893N
54432000

+ 1451
5443200

Table II-2: First few numerical values of LLog coefficients ωnC in ππ scattering in
two-flavor ChPT
n \ C 0 2 4 6 8 10 12

1 1
2 0.55 0.111
3 1.25 0.139
4 0.93 0.124 9.58× 10-3

5 1.54 0.153 1.88× 10-2

6 1.34 0.118 2.73× 10-2 7.04× 10-4

7 1.95 0.140 3.73× 10-2 1.93× 10-3

8 1.85 0.110 3.93× 10-2 3.83× 10-3 5.00× 10-5

9 2.49 0.125 4.97× 10-2 6.12× 10-3 1.78× 10-4

10 2.51 0.102 4.80× 10-2 8.23× 10-3 4.41× 10-4 3.54× 10-6

11 3.23 0.114 5.79× 10-2 1.14× 10-2 8.22× 10-4 1.56× 10-5

12 3.36 0.095 5.46× 10-2 1.33× 10-2 1.33× 10-3 4.59× 10-5 2.53× 10-7

13 4.20 0.105 6.38× 10-2 1.72× 10-2 2.06× 10-3 9.86× 10-5 1.32× 10-6

14 4.48 0.090 6.00× 10-2 1.88× 10-2 2.80× 10-3 1.86× 10-4 4.50× 10-6

15 5.49 0.099 6.87× 10-2 2.32× 10-2 3.93× 10-3 3.20× 10-4 1.10× 10-5

The presented form is not intuitive. In order to show the numerical tendency of

the ω’s values we present the first few ωnC at N = 3, (table II.2) . From table II.2

one can see that ωnC ∼ an10−C/2, where a is some number. Therefore, the series

(II.3-44) has a non-zero radius of convergence. The asymptotic behavior ωn ∼ an

also follows from the homogeneity of eqn. (II.3-36) (see details in appendix C.2).

The coefficient a can be found numerically. In case of N = 3 considering of the first

80-loops we found that

ωn0

∣∣∣
n→∞

∼ 0.76(1.15)n−1,
∑
C

ωnC

∣∣∣
n→∞

∼ 0.78(1.15)n−1.

The contribution of the higher partial waves to the LLog approximation of scattering

amplitude is numerically very small.

At N = 1, the theory (II.2-5) is a free theory, and there are no quantum cor-

rections. We have not paid any attention to this possibility yet. The β-function

has been calculated under the assumptions that there exists an interaction of all
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Figure II-5: The chain diagrams gives the leading large-N order to ππ-scattering.

orders. At N = 1, the Kronecker deltas in the expression (II.3-43) are unites, and

the amplitude is the sum of amplitudes in different channels:

M = A(s, t, u) +B(s, t, u) + C(s, t, u) ∼
∞∑
n=1

Ŝnωn(I + UΩn + ΩnU).

Although all ωnC generated by eqn (II.3-36) at N = 1 are non-zero, the particular

combination ωn(I +UΩn+ΩnU), which only appears in the amplitude, is zero at all

orders.

The large-N limit of the theory (II.2-5) is well known, e.g. [43],[44]. The leading

order of the large-N expansion is given by the bubble-chain diagram (fig.II.5). The

higher orders are given by the diagrams with several bubble-chain subdiagrams. The

number of chains is the level of the large-N expansion. Every loop of the chain brings

the factor N
2
at large-N limit and a chain of (n−1) loops is equal to sn

(
N
2

)n−1
In−1(ε),

where I(ε) is the scalar loop integral. After the R-operation the LLog coefficient

becomes
(
N
2

)n−1
.

The calculation of the next-to-leading order of large-N expansion is a difficult

task, even in LLog approximation. One has to solve the combinatoric of the R-

operation for a (n1 + n2 + 1)-loop diagram. Here the number of loops is calculated

as the sum of loops in the first (second) chain and one loop which connecting the

chains. The usage of eqn. (II.3-36) allows one to find the corrections to the large-N

expansion without difficult calculations.

The ωnC contains all powers of N up to Nn−1 order, which is also seen in table

II.1. Thus, the solution of eqn. (II.3-36) can be represented as follows

ωnC = Nn−1ω
(0)
nC +Nn−2ω

(1)
nC + ..+ ω

(n−1)
nC . (II.3-53)

the β-function (II.3-52) is separated into two parts

β(i, A;n− i, B/C) = Nβ0 + β1, β0 =
NδACδBC

2(2C + 1)
.

The equation for the leading N term, ω(0), has a simple form

ω
(0)
nC =

1

2(n− 1)

n−1∑
i=1

ω
(0)
iC ω

(0)
n−i,C

2C + 1
, (II.3-54)
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and the simple solution

ω
(0)
nC = δC0

(
1

2

)n−1
, (II.3-55)

which fully agrees with the regular calculation [44]. Note, that all ωn,C ̸=0 are next-

to-leading in large-N counting, which is also seen in table 2.1. Thus the s-channel

amplitude at leading large-N order is independent of Mandelstam variables t and u,

ALarge-N(s, t, u) =
s

F 2
(
1− N

2
Ŝ ln

(
µ2

s

)) .
One can find higher order ω(k) recursively, (the details of the solution can be

found in Appendix C.1),

ω
(k)
nC = f

(k)
C (n) + δC0

n−1∑
m=1

2n

(m+ 1)m
f
(k)
0 (m), (II.3-56)

where

f
(k)
C (n) =

1

n− 1

n−1∑
i=1

k−1∑
j=1

ω
(j)
iC ω

(k−j)
n−i,C

2C + 1
+

1

n− 1

n−1∑
i=1

i,n−i∑
A,B=0

β1

k−1∑
j=0

ω
(j)
iAω

(k−j−1)
n−i,B .

II.4 Form factors in LLog approximation

Scalar form factor Form factors (FFs) are very important objects in particle

physic. They give information about the structure of particles and effectively enter

into many phenomenological calculations. Also FFs seem to be the simplest object

for the consideration in EFTs. They are often used for the normalization of low

energy constants (LECs) in EFTs.

The simplest form factor in the model (II.2-5) is the scalar form factor of the

pion. It is defined as the matrix element of the scalar isospin-0 current between the

vacuum and the two-pion states, i.e.

⟨0|J(0)|πa(p1)πb(p2)⟩ = δabF (s), (II.4-57)

where s = (p1 + p2)
2. The current J(0) can be represented as a whole set of scalar

isospin-0 operators, which can be constructed from the building blocks of our theory,

i.e. pion fields πa and derivatives. The only constraint on the construction of the

current operator is the symmetries of the theory and the current. Every independent

operator in the current comes with its own normalization constant. The lowest order
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operator in this expansion contains no derivatives. It can be written as

J(0) = B̃(σ2 +
π2

F 2
) ≃ Bπ2 +O(π4), (II.4-58)

where B is some constant.

The tree calculation of the matrix element (II.4-57) gives us F (s) = 2B +O(s).
At N = 3, when the model coincides with 2-flavor ChPT, the normalization constant

B is

B ≃ m2
π

mq

,

where mπ is the lowest pion mass, and mq = mu = md is the mass of light quarks.

The quantum correction to the scalar FF in ChPT is known up to two-loop order

[48] from the direct calculation. The LLog coefficients are known up to four-loop

order [22]. So, we can carry out a strong check for the method.

The dimension analysis says that the perturbative expansion can be written in

the form

F (s) = 2B(4π)2
∞∑
n=0

Ŝn
n∑
k=0

lnk
(
µ2

−s

)
Tn,k, (II.4-59)

where Ŝ = s
(4πF )2

, and T0,0 = 1. Note that the matrix element (II.4-57) is a one-

parametric object, i.e. only one dimensional parameter s is presented. The analytic

properties of the form factor in the complex s-plane are very simple. In the massless

limit, form factors have only cuts along real s > 0 ray. Thus, the only argument that

can appear in logarithms is (−s). Our aim is to find the LLog behavior of the F (s),

i.e. coefficients Tn,n = vn.

The method of obtaining the coefficients vn is the same as we had for the ππ scat-

tering. One has to examine the renormalization properties of the external composite

operator (II.4-58) in the theory, and properly define the LLog coefficient through the

operator Ĥ. The consideration of the definition gives the recursive equation for the

LLog coefficient vn. Here, we list the main features of the FF considerations without

their proofs, since the proofs are very similar to the previous ones.

• Multi-pion operators (with more then 2-fields) do not contribute to FFs LLogs.

And this statement remains true in any massless theory.

• In order to obtain LLog coefficient, one needs to consider only the one-loop

renormalization of all order terms of the corresponded currents. For that the

2-field current operator have to be introduced at all order with unknown con-

stants. For example, in the case of the scalar form factor the simplest choice
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Figure II-6: The diagram which gives the one-loop anomalous dimension for the
current operator.

is

J(0) =
∞∑
n=0

fn
1

2
∂2nπ2 +O(π4) (II.4-60)

with f0 = 2B. Whereupon, one finds anomalous dimensions of every fn, i.e.

µ2 dfn
dµ2

. We call the object µ2 dfn
dµ2

as anomalous dimension in analogy to the

renormalizable theories, but to be precise it is the β-function of constants f .

In the theory with leading ϕ4 interaction the one-loop anomalous dimension

has the form

µ2 ∂

∂µ2
fn = −

n−1∑
i=0

i∑
A=0

Zn,i,A
1 fn−igiA +O(fg⟨2⟩), (II.4-61)

where Z1 is a coefficient near the simple pole of the diagram in fig.II.6 projected

on the fn-operator. Note that the anomalous dimension with the corresponding

differentiation also has to be added to the operator Ĥ, i.e. Ĥ → Ĥ+Zn[f, g]
∂
∂fn

.

The initial order operator has no anomalous dimension, Z1 = 0.

• Acting by the operator Ĥn on the perturbative series and making the similar

analysis, as in eqn. (II.3-30,II.3-31) one finds that the LLog coefficient of the

FF can be expressed as

vn =
(g10)

−n

f0

Ĥn
1

n!
fn. (II.4-62)

Thus, vn can be found recursively through the equation

vnC =
1

n

n−1∑
i=0

n−i∑
A=0

Zn,i,A
1 viωn−i,A. (II.4-63)

The boundary condition for eqn. (II.4-63) can be chosen as vn = 1, by the

proper redefinition of f0. The ωnC is the LLog coefficient of the ππ scattering

amplitude (II.3-34) which satisfies eqn. (II.3-36).

The calculation of the Zn,i,A
1 can be easily done with the technique that was

introduced above. The operators (II.4-60) are the ”half” (without left pair of π-

fields) of the operator Vn0 (II.3-41) and its anomalous dimension is closely connected
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with β(i, A;n− i, 0/0). The details of the calculation are presented in Appendix A.3.

The result is

Zn,i,A
S =

N

2
δA0 +

1 + (−1)A

2
ΩA0
n−i, (II.4-64)

where ΩAB
n is defined by exp. (II.3-48), and particularly

ΩA0
n =

(−1)n+A(n− A)!(n+ A+ 1)!

(n+ 1)!(n+ 1)!
, A 6 n.

Eqn. (II.4-63) is linear, in contrast to eqn. (II.3-36). Therefore, it can be solved

exactly in terms of the LLog coefficients of t00-partial wave for the ππ-scattering,

which will be shown in the next chapter. The first few values of vn (at N = 3)

obtained by the numerical computation are

vn =

{
1, 1,

43

36
,
143

108
,
15283

9720
,
2578307

1458000
,
888770227

428652000
,
26311049231

11202105600
, ..

}
.

This values coincide with the known results of the direct 2-loop calculation in ChPT

[48], and the four-loop indirect LLog compilation of ref. [22].

One can solve eqn. (II.4-63) in the large-N limit. Substituting expansion (II.3-53)

into eqn. (II.4-63) and finding the solution in the form

vn =
n∑
k=0

(
N

2

)n−k
v(k)n , (II.4-65)

we find that the leading order large-N is

v(0)n = 1.

The next-to-leading order is expressed in terms of ω
(1)
n0

v(1)n =
n∑
k=1

1

k

[
Ω00
k + ω

(1)
k,0

]
=

n∑
k=1

(2(n+ 1)

k(k + 1)
− 1

k

)(
Ω00
k +

2

k − 1

k−1∑
i=1

(i!(k − i)!
(k + 1)!

)2)
,

where for the last equality we have used exp. (II.3-56). The n → ∞ asymptotic

behavior of v
(1)
n can be found analytically, it reads

v(1)n

∣∣∣
n→∞

∼ n(4− π2

6
− 4 ln 2) + (3− π2

6
− 2 ln 2) +O(n−1).

So we conclude that the large-N expansion works very bad for the O(N + 1)/O(N)

σ-model, because starting from some n (for scalar FF it is n ∼ 1.13N) the next-to-

leading large-N order outruns the leading order and keeps growing. Moreover, one

can show that v
(k)
n grows as nk at large n. Therefore, the higher orders of the large-
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Figure II-7: (a)The plot of the scalar form factor with different number of pions.
(b)The plot of the first n terms of the scalar form factor (II.4-59). Both plots
normalized as F (0) = 1.

N expansion dominate over the leading order. This is demonstrated in fig.II.7(a),

the curves with different values N strongly differ from each over. Also the higher

order large-N series diverges if one sums them independently, whereas the complete

answer converge perfectly. One can see that in fig.II.7(b): the first 10 terms give

approximately the full result.

Vector form factor The vector or electro-magnetic form factor of the pion is also

a well investigated object. The consideration of its LLog contribution is very similar

with the scalar FF case. The definition of the vector FF is

⟨0|Jµ(0)|πa(p)πb(p′)⟩ = iε3ab(p′ − p)µF(s) . (II.4-66)

The definition of the electro-magnetic current Jµ at all orders can be done in the

following way

Jµ =
∞∑
n=0

fnε3ab ∂2n (πa∂
µπb) . (II.4-67)

One can find that this vertex can be obtained formally from Vn1 by taking out the

left pair of field. Thus, its anomalous dimension is closely connected with β(i, A;n−
i, 1/1). Calculating of the diagram in fig.II.6 with vector current (Appendix A.3),

one finds that the one-loop anomalous dimension of the vector current (II.4-67) is

Zn,i,A
V =

1

3
ΩA1
n−i . (II.4-68)
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Substituting ZV into eqn. (II.4-63) one obtains the LLog coefficients for F(s). The

first few of them are{
1,−1

6
,
1

72
,− 91

1296
,

3607

155520
,− 7124897

163296000
,

937784623

41150592000
,− 134135230877

4032758016000
,

189853887100991

8710757314560000

}
.

The first tree numbers are known from the explicit two-loop calculation [48]. Note,

that the consequence of LLog coefficients for the vector FF is sign-variable.

The anomalous dimension of the vector current (II.4-68) does not contain N , and

it leads to the simplification of the large-N expansion evaluating. The leading and

next-to-leading terms of the large-N expansion for the LLog coefficient of vector FF

are

Vn = δ0,n

(
N

2

)n
+

(
N

2

)n−1
(−1)n−1

(n+ 1)(n+ 2)
+O(Nn−2).

One can find that the k-th order of large-N expansion at large n behaves as V(k)
n ∼

nk−3. Therefore, although the large-N expansion works much better for the vector

FF than for the scalar FF, it also fails at the n ∼ N3 order of the expansion.

Tensor form factor The tensor or the gravitational form factor of the pion is a

more complicated object from the technical point of view . From the physical point

of view the tensor FF often appears in hard processes with the participation of pions.

The tensor FF has two components

⟨0|Jµν(0)|πa(p)πb(p′)⟩ = δab
[1
2
(gµνq

2 − qµqν)θ1(s) +
1

2
PµPνθ2(s)

]
; (II.4-69)

where

s = (p′ + p)2 , qµ = (p+ p′)µ , Pµ = (p′ − p)µ .

The lowest order of the momentum-energy tensor Jµν is given by the variation of the

Lagrangian (II.2-5) over the metric gµν ,

Jµν(0) = ∂µπ
a∂νπ

a − gµν
2
∂απ

a∂απ
a +O(π4), (II.4-70)

where the second term results from the variation of the invariant integral measure,
√
g, in the action. Comparing exp. (II.4-70) with definition (II.4-69), one finds that

both tensor FFs are normalized on unity, θ1,2(s) = 1 +O(s).
All order tensor sources can be chosen in the following way

Jµν1 (0) =
∞∑
n=0

fn∂
2n
(
∂µπ

a∂νπ
a − gµν

2
∂απ

a∂απ
a
)
, f0 = 1 (II.4-71)
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However, the renormalization of this source demands the introduction of another

tensor current which does not exist at the lowest level:

Jµν2 (0) =
∞∑
n=0

hn
4
∂2n
(
πa∇µ∇νπ

a
)
, h0 = 0. (II.4-72)

The renormalization of these two currents is not diagonal, i.e. the constants f and h

take apart in the renormalization of each other. Therefore, the anomalous dimensions

can be written as a matrix

µ2 ∂

∂µ2

(
fn
hn

)
=

n−1∑
i=0

i∑
A=0

(
Zff Zfh

Zhf Zhh

)(
fn
hn

)
giA +O(fg⟨2⟩). (II.4-73)

Defining the LLog coefficient of the evolution of the currents J1 and J2 similar to

the definition (II.4-62) (
ϕn
ψn

)
=

(g10)
−n

f0

Ĥn
1

n!

(
fn
hn

)
,

we obtain the recursive equations:(
ϕn
ψn

)
=

1

n

n−1∑
i=0

n−i∑
A=0

(
Zff Zfh

Zhf Zhh

)(
ϕi
ψi

)
ωn−i,A. (II.4-74)

The initial condition for the equation
(
ϕ0
ψ0

)
=
(
1
0

)
.

The tree expression for the currents gives

⟨0|Jµν1 (0) + Jµν2 (0)|πa(p)πb(p′)⟩tree =
∞∑
n=0

sn

2

[
gµνq

2 − qµqν + PµPν

]
fn − PµPνhn.

(II.4-75)

Thus, the tensor FF LLog coefficients come from the combination of the LLog coef-

ficients for the currents in the following way:(
θ1(s)

θ2(s)

)
=
∞∑
n=0

Ŝn lnn
(
µ2

−s

)(
ϕn

ϕn − ψn

)
. (II.4-76)

The matrix of the anomalous dimensions is obtained by the direct calculation:(
Zff Zfh

Zhf Zhh

)
=

n−i∑
B=0

(
NδAB + 2ΩAB

n−i
) [δB0

3

(
1 − 1

2

1 − 1
2

)
+
δB2

15

(
−1

2
1
2

−1 1

)]
. (II.4-77)

The numerical calculation of the first few elements at N = 3 gave

θ1 :

{
1,

2

3
,
16

27
,
77

162
,
10111

19440
,
391051

850500
,
1515484571

2893401000
,
4184563757183

8506598940000

}
,
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θ2 :

{
1, 0,− 1

54
, 0,− 337

19440
,

6407

1913625
,− 167062219

11573604000
,

57017479021

11342131920000

}
,

which is can be checked only by a 1-loop calculation presented in ref. [49]. Note, that

the θ2 LLog coefficients at 1 and 3 loop order are exactly zero, somehow it indicates

that for θ2(s) the NLLog part gives a stronger contribution.

The system of recursive equations (II.4-74) can be diagonalized. The operators

for the currents J1,2 can be combined into the operators with only the zeroth and

the second partial waves: 2J1− J2 ∼ P0 and J1− J2 ∼ P2. Due to the ”diagonality”

of the Legendre operator basis (II.3-45), these operators renormalize only them-self.

Therefore, instead of the system of equations (II.4-74) one obtains two independent

equations:

(ϕ− ψ)n =
1

n

n−1∑
i=0

n−i,i∑
A,B=0

δ2B
15

[
NδAB + 2ΩAB

n−i

]
(ϕ− ψ)iωn−i,A , (ϕ− ψ)0 = 1,

(2ϕ− ψ)n =
1

n

n−1∑
i=0

n−i,i∑
A,B=0

−δ0B
6

[
NδAB + 2ΩAB

n−i

]
(2ϕ− ψ)iωn−i,A , (2ϕ− ψ)0 = 2.

The large-N investigation gives no new information from the methodological point

of view. For completeness we provide the first two orders of large-N expansion.

(2ϕ− ψ)n =
n∑
k=0

(N
2

)n−k
ϱ(k)n , (ϕ− ψ)n =

n∑
k=0

(N
2

)n−k
ρ(k)n

ϱ(0)n =
2

n!

Γ(n+ 1
3
)

Γ(1
3
)

,

ϱ(1)n =
1

3n

n−1∑
i=0

ϱ
(1)
i +

1

3n

n−1∑
i=0

[
Ω00
n−iϱ

(0)
i + ω

(1)
n−i,0ϱ

(0)
i

]
, ϱ

(1)
0 = 0,

ρ(0)n = δn,0, ρ(1)n =
−2
15n

[
Ω02
n + ω

(1)
n2

]
.

II.5 LLog for ππ scattering in other models

In this section we present the results of the calculation of the LLog coefficients in

the massless ChPT and the matrix model. These models have more complicated

structure than the O(N + 1)/O(N) σ-model (II.2-5).

Massless ChPT ChPT is an EFT for the low energy QCD, see section 1.2. In the

massless limit the Lagrangian of ChPT is invariant under SU(N)L×SU(N)R/SU(N)V

transformations, where N is the number of quark flavors. The lowest order La-
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grangian has the form (I.3-11):

L2 =
F 2

4
tr
[
∂µU∂µU

†] , (II.5-78)

where U is a matrix of Goldstone fields U = exp[iϕ
aλa

F
], λa is a generator of SU(N)

group, and F is the lowest coupling. Since SU(2) = O(3) the 2-flavour ChPT is

equivalent to the Weinberg model (II.2-5).

For our estimation we have to represent the Lagrangian (II.5-78) in the form of

(I.1-2). Expanding the field U over the fields π and taking the trace one obtains

L2 = −1

2
πa∂2πa − 1

4F 2

[δabδcd
N

+
1

2
dabαdαcd

](
πaπb∂2πcπd

)
+O(π6), (II.5-79)

where {ta, tb} = dabctc. The only difference from the previous case consist in the

group coefficient of the vertex.

In the SU(N)-symmetric Lagrangian the two possible independent group con-

structions of the vertices can appear, namely ∼ tr[UU †] and ∼ tr[U ]tr[U†] . In the

four-field part of the Lagrangian they results into
[
δabδcd

N
+ 1

2
dabαdαcd

]
and δabδcd re-

spectively. The second structure is not presented in the initial Lagrangian (II.5-79),

but it appears at higher orders. This situation is similar to tensor FF considera-

tion. We introduce two sets of operators with their own coupling constants: gn and

hn. During the renormalization they mix with each other, therefore, the β-function

coefficients compose the matrix.

Here, without annoying details we present the final result of our calculation. The

ππ scattering amplitude in the model (II.5-78) at LLog accuracy has the form (the

indices and momenta are in the same position as in fig.II.4):

M = (4π)2
∞∑
n=0

Ŝn lnn−1
(
µ2

|s|

)
· (II.5-80)

·
n∑

C=0

{[
δabδcd

N
+

1

2
dabαdαcd

]
ωnC + δabδcdvnC

}
PC

(
1 +

2t

s

)
+

(
b↔ c

p2 ↔ p3

)
+

(
b↔ d

p2 ↔ p4

)
.

The coefficients ωnC and vnC satisfy the equations

ωnC =
1

n− 1

n−1∑
i=1

i,n−i∑
A,B=0

[
βgggωiAωn−i,B + βgghωiAυn−i,B

]
(II.5-81)

υnC =
1

n− 1

n−1∑
i=1

i,n−i∑
A,B=0

[
βhggωiAωn−i,B + βhghωiAυn−i,B + βhhhυiAυn−i,B

]
,

where the β-functions obtained from the direct calculation of the diagrams of fig.II.3.
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are

βggg = R
[1
2

(N
4
− 1

N

)δACδBC
2C + 1

+
(N
8
− 1

N

)(δBCΩAC
i

2C + 1
+
δACΩ

BC
n−i

2C + 1

)
+
(N
8
− 2

N

)ΩAC
i ΩBC

n−i

2C + 1
+
N

8

n∑
J=0

(1− (−1)J)ΩAJ
i ΩBJ

n−iΩ
JC
n

2J + 1

]
βggh = R

[δACΩBC
n−i

2C + 1
+ 2

n∑
J=0

ΩAJ
i ΩBJ

n−iΩ
JC
n

2J + 1

]

βhgg = R
[(1

8
+

1

4N2

)δACδBC
2C + 1

+
(1
8
+

1

2N2

)(δBCΩAC
i

2C + 1
+
δACΩ

BC
n−i

2C + 1

)
+
(1
8
+

1

N2

)ΩAC
i ΩBC

n−i

2C + 1
+

1

8

n∑
J=0

(1 + (−1)J)ΩAJ
i ΩBJ

n−iΩ
JC
n

2J + 1

]
βhgh = R

[(N
2
− 1

2N

)δACδBC
2C + 1

+
(N
2
− 1

N

)δBCΩAC
i

2C + 1

]
βhhh = R

[N2 − 1

4

δACδBC
2C + 1

+
1

2

δBCΩ
AC
i

2C + 1
+

1

2

δACΩ
BC
n−i

2C + 1
+

n∑
J=0

ΩAJ
i ΩBJ

n−iΩ
JC
n

2J + 1

]
where the coefficient R is the parity factor

R =
1 + (−1)C

2
(1 + (−1)A)(1 + (−1)B).

The initial conditions are ω10 = 1 and v10 = 0.

At N = 2, the structure constants are dabc = 0. Therefore, the LLog coefficients

in exp. (II.5-80) are (ωn+vn). The system of equation (II.5-81) can be diagonalized,

and the equation for (ωn + vn) will contain only βhhh . Thus, LLog coefficients of

the model coincide with ones obtained for the O(4)/O(3) σ-model, see (II.3-43,II.3-

44,II.3-52).

In table II.3 we presented the first few values of the coefficients. The coefficients

ω are polymons in N with maximal power (n − 1). The polinomiality in N of the

coefficients also follows from the usual rules of N -calculations. The cancelation of

the inverse powers of N , which are presented in the equations (II.5-81) is a strong

check of our calculation. Also one can see that all vnC are subleading at large-N

limit. Consequently the pure δ-index-structures should be subleading in the rules for

large-N calculations for SU(N) groups.

The equation for ω’s is very good object for the investigation of the large-N

limit of non trivial theories, because this equation, in contrast to the usual RGE for

renormalizable theories, ”fills” the diagram structure at all orders of perturbation

expansion much better. The only known rule for the large-N expansion at SU(N)

groups is that the leading order terms are contained only in the planar graphs [51].
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Table II-3: The first few values of LLog coefficients ωnC and vnC for ππ scattering
in massless N -flavored ChPT

n \ C 0 2 4
1 1 0 0
2 5N

72
N
72

0

3 5N2

144
+ 25

48
5
48

0

4 547N3

77760
− 403N

14400
79N
5040
− 377N3

1088640
N3

40320
+ 713N

302400

5 11509N4

5832000
+ 101339N2

2592000
+ 42427

172800
− 27023N4

522547200
+ 16661N2

2073600
+ 3071

48384
...

n \ C 0 2 4
1 0 0 0
2 5

24
1
24

0
3 85N

576
5N
576

0

4 3949N2

43200
+ 1463

14400
191N2

120960
+ 209

5040
13N2

201600
+ 209

100800

5 1990271N3

37324800
+ 14749N

230400
4931N3

20901888
+ 109N

8064
4553N3

174182400
+ 851N

537600

But planar graphs also contain subleading terms in large-N parts. The LLog terms

are also present in the planar graphs only. Therefore, investigating eqns. (II.5-81)

can give us a key for understanding the rules of large-N counting behind the planar

graphs.

The large-N behavior of the coefficients ω is described by eqn. (II.3-36) with the

β-function

β
SU(N)
Large-N = R

N

8

[δACδBC
2C + 1

+
(δBCΩAC

i

2C + 1
+
δACΩ

BC
n−i

2C + 1

)
+

ΩAC
i ΩBC

n−i

2C + 1
(II.5-82)

+
n∑
J=0

(1− (−1)J)ΩAJ
i ΩBJ

n−iΩ
JC
n

2J + 1

]
.

The equation for the coefficient v can be dropped out because βhgg is subleading in

the large-N counting. We see that the theory, which describes the large-N limit of

SU(N) theories, is not so simple as for O(N)-model. Unfortunately, the solution of

this equation is unknown.

The matrix model The matrix models are very popular EFTs since they provide

wide possibilities to realize the difficult enclosed symmetries. Here we consider the

simplest matrix extension of the O(N) model (II.2-5), namely the O(N+K)/O(K)×
O(N) σ-model. It is given by the initial Lagrangian of the form:

L =
1

2
(∂µϕ

a
α)(∂µϕ

a
α)−

1

2F 2
(ϕaα∂µϕ

b
α)(ϕ

a
β∂µϕ

b
β) , (II.5-83)
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where the lower indices run from 1 to (N +K) and the upper indices run from 1 to

K. The condition that the fields lie on the corresponding topological surface is

N∑
α=1

ϕaαϕ
b
α = δabF 2. (II.5-84)

In order to present the Lagrangian (II.5-83) in the form (I.1-2) one has to integrate

out the degrees of freedom fixed by relations (II.5-84). Let us choose as dependent

degrees of freedom the upper components of ϕ : ϕaα = (Ua
1 , .., U

a
K , π

a
K+1, .., π

a
K+N).

The U -fields can be expressed in terms of π-fields with the help of the (II.5-84):

Ua
α = δaαF − 1

2F
πaβπ

α
β +O(π4). The fields π are K × N matrices. The Lagrangian

(II.5-83) in terms of fields π has the form

L2 = −
1

2
πaα∂

2πaα +
1

4F 2
πaαπ

b
β∂

2πaβπ
b
α +O(π6).

The further consideration repeats all previous cases. Therefore, we give only the

final result of our calculation. The ππ scattering at the LLog approximation has the

following structure:

M = (4π)2
∞∑
n=0

Ŝn lnn−1
(
µ2

|s|

)
· (II.5-85)

·
n∑

C=0

{ [
δa1a3δa2a4δα1α4δα2α3 + (−1)Cδa1a4δa2a3δα1α3δα2α4

]
ωnC

+δa1a2δa3a4δα1α2δα3α4vnC

}
PC

(
1 +

2t

s

)
+ (2↔ 3) + (2↔ 4),

where the upper indices running from 1 toK are denoted by ai, the lower indices run-

ning from 1 to N are denoted by αi, the enumerating of the pions fields is coincided

with enumerating of its momenta, see fig.II.4.

The coefficients ω and v satisfy the system of equations (II.5-81) with β-functions:

βggg = ((−1)A + (−1)B+C)
ΩBA
n−iΩ

AC
n

2A+ 1
+ ((−1)B + (−1)A+C)Ω

AB
i ΩBC

n

2B + 1

+(K + (−1)A+B+CN)
n∑
J=0

(−1)JΩAJ
i ΩBJ

n−iΩ
JC
n

2J + 1
,

βggh = (1 + (−1)B)
[δACΩBC

n−i

2C + 1
+ (1 + (−1)A+C)

n∑
J=0

ΩAJ
i ΩBJ

n−iΩ
JC
n

2J + 1

]
,
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βhgg = (1 + (−1)C)
[
((−1)A + (−1)B)

ΩAC
i ΩBC

n−i

2C + 1
+
δABΩ

AC
n

2C + 1

]
,

βhgh = (1 + (−1)B)
[δACδBC
2C + 1

+ ((−1)AN +K)
δBCΩ

AC
i

2C + 1

]
,

βhhh =
(1 + (−1)A)(1 + (−1)B)

16

[
NK

δACδBC
2C + 1

+ 2
δACΩ

BC
n−i

2C + 1
+ 2

δBCΩ
AC
i

2C + 1

+2(1 + (−1)C)
n∑
J=0

ΩAJ
i ΩBJ

n−iΩ
JC
n

2J + 1

]
.

We do not present here the explicit expressions for ω and v, because they are

quite large. The theory (II.5-83) is symmetrical under interchange N and K. Using

the condition (II.5-84) we had broken this symmetry and, as a result, β-functions has

no N ↔ K symmetry. But the coefficients ω and v are symmetric under interchange

of N and K, that confirms our calculation. Also one can check that in the limit N(or

K)→ 1 the model (II.5-83) coincides with the model (II.2-5).

We also note that in this model all components (odd and even) of the partial

wave basis are presented, in contrast with both previously considered cases? where

were only even partial waves. It is a consequents of a non trivial (t ↔ u) crossing

symmetry, which is also seen in the expression forM (II.5-85). However, for consid-

eration of this model one can use the Legendre polynomial operator (II.3-41) without

any addition extensions.

II.6 LLogs for 6π amplitude

In this section in order to demonstrate the power of the presented method we derive

the recursive equations for the LLog coefficients of the 6-pion amplitude . The

calculation of kernels of the equations was not done. However, we suppose that

the derivation of the corresponding equations is a good example of the stated above

method. We consider a model with leading ϕ4 interaction like massless ChPT or

the O(N + 1)/O(N) model. The concrete form of the model influences only on the

expression of β-function.

As in case of the ππ scattering, one has to write down the most general perturba-

tive expansion for the 6π amplitude. The g-structure of the 6π amplitude coincides

with the g-structure of β(6)-function (II.2-15) with addition of the 0-loop part:

M(6) = ⟨π2|S − I|π4⟩ (II.6-86)

=
∞∑
n=1

E2n

n−1∑
l=0

l+1∑
j=0

∑
p

|g⟨l+p−j+2⟩|n−j+1

l−max[j−1,0]∑
m=0

lnm(µ2)fn,j,l,p(k),

where k are all momenta variables of the 6π amplitude.

Differentiating the coefficient of E2n inM(6) (n− 1) times one obtains the LLog
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(a) (b)

Figure II-8: (a) Tree diagrams for the ππ → ππππ amplitude (the crossed diagrams

should be added). (b) The one-loop diagrams contributed to the β
(6)
n .

coefficient:[
µ2 ∂

∂µ2

]n−1
M(6)

∣∣
E2n = (n− 1)!

[
fn(k)|g⟨n+1⟩|n+1 + f̃n(k)|g⟨n⟩|n

]
. (II.6-87)

On the one hand, the momentum dimension of the expression is (−2n − 2). On

the other hand, exp. (II.6-87) contains only the first order coupling constants, as

it follows form property (II.2-18). Therefore, the second term in eqn. (II.6-87)

contains one g
(6)
1 vertex. However, usually, due to the symmetries of Lagrangian

g
(6)
1 ∼ (g1)

2, for example (II.2-5). Expanding eqn. (II.6-87) over complete basis PC

in the momentum and group spaces one finds:[
µ2 ∂

∂µ2

]n−1
M(6)

∣∣
E2nPC

= (n− 1)!RnCg
n+1
10 , (II.6-88)

where RnC is the required LLog coefficient.

The differentiation over µ2 is equivalent to the action of the operator Ĥ. Acting

by Ĥ (n− 1) times and performing the analysis of the summation limits one obtains

that only two terms of the sum (II.3-29) give a non-zero contribution and that only

one-loop part of Ĥ is presented:

Ĥn−1M(6)
∣∣
E2n = Ĥn−1

1

[
f0(k)|g⟨2⟩|n+1 + f̃0(k)|g⟨1⟩|n

]
. (II.6-89)

The term in the square brackets is the tree order of the 6π-amplitude, which contain

two graphs. One of them is a pure V
(6)
n -vertex. Another is the tree with two V (4)

vertices, see fig.II.8(a). Expanding exp. (II.6-89) over the basis PC one obtains

Ĥn−1M(6)
∣∣
E2nPC

= Ĥn−1
1

[
n∑
i=1

f(i, A;n+ 1− i, B/C)g(4)iA g
(4)
n+1−i,B + g

(6)
nC

]
, (II.6-90)

where f(i, A;n+1− i, B/C) are known coefficients. We assume that the normaliza-

tion of basis PC is such that f̃0 =
∑

C PC .
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We define the LLog coefficient of the g(6) evolution

ænC =

(
g
(4)
10

)−n
(n− 1)!

Ĥn−1
1 g

(6)
nC , (II.6-91)

in complete analogy of definition (II.3-34). Expressions (II.6-88) and (II.6-90) are

equal to each other, therefore, after simple reorganization one obtains that the LLog

coefficient is

RnC =
n∑
i=1

f(i, A;n+ 1− i, B/C)ωiAωn+1−i,B + ænC . (II.6-92)

The values of the coefficients ωnC are fixed by eqn. (II.3-36). The equation for

the coefficients ænC can be obtained in the similar way. The part of operator Ĥ1,

which acts on the g(6) coupling has the form

Ĥ1 ∼

[ ∑
i+j+k=n

βi,j,kg
(4)
i g

(4)
j g

(4)
k +

n−1∑
i=1

β̃i,n−ig
(6)
i g

(4)
n−i

]
∂

∂g
(6)
n

,

where the auxiliary indices are omitted for compactness. The β-functions are given

by the pole parts of the one-loop diagrams shown in fig. II.8(b). With the help of this

expression, and definitions (II.3-34,II.6-91) one obtains a linear recursive equation

for æn

æn =
1

n− 1

∑
i+j+k=n

βi,j,kωiωjωk +
1

n− 1

n−1∑
i=1

β̃i,n−iæiωn−i. (II.6-93)

The next step is the construction of the higher order Lagrangian and the cal-

culation of the β-function. Note, that the higher order Lagrangian has to be built

preserving the global symmetry of the theory. This gives some set of relations be-

tween the g(6) couplings and g(4) couplings, which would reflect on the β-functions.

This calculating part of the consideration has not been done yet, since it has little

practical interest.

There are also some hints which say that eqn. (II.6-93) can be greatly simplified,

if one works in terms of the LLogs coefficients RnC . It seems that some intrinsic

symmetries of the β-function should exist, and the equation written in terms of Rn

would be of the form of the FF equation, i.e. Rn ∼
∑
Riωn−i. In the next chapter

we will discuss the source of these hints.
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II.7 Discussion

The main result of this chapter is the proof of the general relation (II.2-25). Together

with the renorminvariance principle it gives formal definitions for the LLog coeffi-

cients of amplitudes. The formal definition of the LLog coefficients allows one to

find the coefficients recursively. Such approach can be used in any EFT irrespective

to the presence of masses. The masslessness of a theory restricts the number of the

counterterms and therefore, the equations on LLog coefficients are closed. In the

presence of masses the system n the LLog coefficients contains an infinite number

of equations, because the renormalization of all possible types of vertices has to be

taken into account.

Among all massless EFTs, the theories with the four-field leading interaction

take a special place, because LLog terms in such theories are mostly made up by the

renormalization of the four-field operators. On the diagrammatical level, it means

that four-vertices are presented in a diagram without any restrictions, see discussion

in the section II.1. Therefore, the leading logarithmal running of the couplings g(4),

which is expressed with the help of coefficients ωn (II.3-34), depends only on its

own properties. Thus, the recursive equation (II.3-36) is closed, but non-linear. The

recursive equations on the LLog coefficients of the other objects in the theory are

linear, but contain the coefficients ω’s or other senior quantities, for example see

equations (II.4-63) and (II.6-93).

It can be easily understood through the consideration of the topological properties

of the graphs. The operator Ĥ1 pull apart a vertex and inserts instead of it a loop

of the same dimension. Thus, the form of the LLog recursive equation for some

amplitude repeats the form of the one-loop graphs, which gave corrections to this

amplitude. Then one can see the form correlation between the equations (II.3-36,II.4-

63,II.6-93) and figs.II.3,II.6,II.8b, respectively. Therefore, obviously the graphs with

four external lines only can reproduce themself, at one-loop level and without tadpole

subgraphs.

A slightly different situation is in the EFTs of the ϕ3-type. The general discussion

and the properties of operator Ĥ remains unchanged. But the topology of the graphs

in such a theory is completely different. The one-loop correction to the 3-point Green

function is given by the graphs shown in fig.II.9a. The graphs contain the 2- and

4- vertices as well as 3-vertices. The one-loop graphs for the 2- and 3- point Green

functions (fig.II.9c and fig.II.9b, respectively) also contain 2-,3-,4-vertices. Therefore

the equations on the LLog coefficients for the 2-,3- and 4- point Green functions are



Discussion 53

Figure II-9: Types of diagrams needed to calculate for obtaining the recursive equa-
tion for senior LLog coefficients in ϕ4-type theories.

interlaced into the system of recursive equations

ηn ∼
∑

i+j+k=n

ηiηjηk +
∑
i+j=n

ηiωj +
∑
i+j=n

ηiγj,

ωn ∼
∑

i+j+k+m=n

ηiηjηkηm +
∑

i+j+k=n

ηiηjωk +
∑
i+j=n

ωiωj +
∑
i+j=n

ωiγj,

γn ∼
∑
i+j=n

ηiηj,

ηn ≃ Ĥn−1
1 g(3)n , ωn ≃ Ĥn−1

1 g(4)n , γn ≃ Ĥn−1
1 g(2)n .

The junior quantities (like FF, 5-point Green function and so on) will be expressed

through these three coefficients linearly.

The theories with space-time dimensions D > 4 can be considered in the same

way. The equations which described the LLog behavior are the same. The only

difference in the calculation is the contraction of the higher order Lagrangian and

the expression for the β-functions. In the next chapter, we will investigate theories

in D > 4 space-time dimensions in details.

Since the recursive equations on the LLog coefficients are universal and depend

only on the topology of graphs, they are also correct for the renormalizable theories.

The only difference between the renormalizable and non-renormalizable theories is

the form of the equation kernel. For the renormalizable theories the kernel does not

depend on n. For example, the recursive equation for the LLog coefficient of 4-point

amplitude in usual ϕ4-model is

ωn =
9/2

n− 1

n−1∑
i=1

ωiωn−i, (II.7-94)

where 9
2
is the well-known β -function coefficient in this model [81]. The solution of

eqn. (II.7-94) is ωn = (9/2)n−1, which gives the well-known one-loop logarithmical
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running of coupling:

g(µ2) =
∞∑
n=1

ωng
n(µ2

0) ln

(
µ2

µ2
0

)
=

g(µ2
0)

1− 9
2
g(µ2

0) ln
(
µ2

µ20

) .
Note, that the kernel of the non-renormalizable equation (II.3-36) is also independent

on n in the large-N limit (II.3-54). Therefore, the large-N limit for the O(N) sym-

metric non-renormalizable EFT is effectively renormalizable, which in, e.g. [17],[50].

There is little literature on the non-linear recursive equations. One of the modern

books on the properties of the non-linear recursive equations [52] is mainly devoted

to the functional equations and their relations with recursive ones. With its help

one can write an integral equation for the generating function for LLog coefficients

(see Appendix C.2). Then the generation function for the coefficient ω satisfies the

Hammerstein equation of the second kind. There are several known exact solutions

for specific kernels, see e.g.[53]. In the next chapter we will discuss the possible ways

to the solutions of the recursive equations.

The technique of the present chapter allows one to calculate the higher order

of logarithms as well. There are two types of NLLogs. Some of them are ”true”

NLLogs, i.e. they come from the next-to-leading poles of the higher loop graphs,

another are ”false”, i.e. they are LLogs of the subleading graphs (see the discussion

after exp. (II.2-26)). The difference between these two types of logarithms is huge:

for the ”true” NLLogs one has to calculate the two-loop β-function; for the ”false”

NLLog the already calculated one-loop β-function is enough, but the values of the

couplings of the second generation have to be fixed.
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LLogs in EFT from analyticity and

unitarity

The recursive equations for LLog coefficients in a massless theory can be derived using

the analyticity of the amplitude, the unitarity relation, and the crossing symmetry.

The LLogs terms are fixed by these three conditions, and the one-loop β-function

has an universal form for ϕ4 types of EFTs including pure renormalizable cases and

theories in higher dimensions. The dependence on the explicit form of the Lagrangian

is in the boundary conditions for recursive equation, which are given by the tree order.

The structure of the chapter is the following. First, we investigate the FFs in the

O(N+1)/O(N) σ-model using its analytical properties and obtain the recursive equa-

tion for FF LLog coefficients. After this we obtain the equation for the ππ-scattering

LLog coefficients in the EFT with an arbitrary global symmetry. We generalize the

equation for the case of the mixed renormalizable and non-renormalizable interac-

tions, as well as for the arbitrary even D > 4-dimension case. At the end of the

chapter, we present examples of the calculation in several popular EFTs.

III.1 LLog for form factors

Let us consider the pion scalar form factor in the O(N +1)/O(N) σ-model, (II.2-5).

The formal definition of the scalar FF is

⟨0|J(0)|πa(p1)πb(p2)⟩ = δabF (s), (III.1-1)

55
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where s = (p1 + p2)
2. The momentum expansion of this object was investigated in

section II.2, and at the LLog approximation it reads

F (s) = 2B(4π)2
∞∑
n=0

vnŜ
n lnn

(
µ2

−s

)
+O(NLLog), (III.1-2)

where the coefficient vn satisfies eqn. (II.4-63) with the anomalous dimension (II.4-

64).

The FF in the complex s-plane has singularities only on the right half (s > 0)

of the plane, see e.g.[54],[55]. This explains our choice of the logarithm argument in

exp. (III.1-2). There are no one-particle intermediate states in the theories of the

ϕ4-type or at least they do not influence on the LLogs. Therefore, the only expected

singularities are cuts, which appear due to the logarithms.

The cuts are subdivided into the two-,three- four-,etc. particle cuts, which have

the branching points at s = 4m2, 9m2, 16m2, etc, respectively (for the system of the

particles with equal masses m). In case of a massless theory, the branching points

of the cuts glue together at s = 0. However, one has to distinguish between the

cuts since they contribute differently to the logarithm structure. Namely, the multi-

particle cuts (the more-than-two-particle cuts) are a consequence of the non-leading

logarithms. This statement can be proven as following.

Let us consider the discontinuity over the right cut (s > 0) of the matrix element

(III.1-1). According to the unitarity of the S-matrix one has

2δabDiscF (s) =
∞∑
n=2

∫ n∏
i=1

d3k⃗i
(2π)22k0i

× (III.1-3)

⟨0|J(0)|πa1(k1)πa2(k2)..πan(kn)⟩⟨πa1(k1)πa2(k2)..πan(kn)|πa(p1)πb(p2)⟩,

where DiscF (s) ≡ 1
2
(ImF (s+ iε)− ImF (s− iε)), the summation goes over all possi-

ble intermediate states starting from the two-pion state. The discontinuity decreases

the power of the polynomial in ln(−s) by unity. Therefore, the left-hand side of eqn.

(III.1-3) has the form

DiscF (s) ∼ F−2
∑
j

F−2jLj︸ ︷︷ ︸
LLogs

+F−4
∑
j

F−2jLj︸ ︷︷ ︸
NLLogs

+F−6
∑
j

F−2jLj︸ ︷︷ ︸
N2LLogs

+.. ,

where all numerical coefficients are set to unity, L = ln(s) and F is the expansion

parameter. We keep the powers of F , because they are our controllers of the expan-

sion order. The amplitudes with different number of pions have a different counting



LLog for form factors 57

of F -powers, namely

⟨0|J(0)|(π)k⟩ ∼ F−k+2
∑
j

F−2jLj︸ ︷︷ ︸
LLogs

+F−k
∑
j

F−2jLj︸ ︷︷ ︸
NLLogs

+.. ,

⟨(π)k|ππ⟩ ∼ F−k
∑
j

F−2jLj︸ ︷︷ ︸
LLogs

+F−k−2
∑
j

F−2jLj︸ ︷︷ ︸
NLLogs

+.. .

Comparing the right- and left-hand sides of eqn. (III.1-3) one finds that

(III.1-4)
F−2

∑
j

F−2jLj︸ ︷︷ ︸
LLogs

+F−4
∑
j

F−2jLj︸ ︷︷ ︸
NLLogs

+.. = F−2
∑
j

F−2jLj︸ ︷︷ ︸
k=2,LLogs

+ F−4
∑
j

F−2jLj︸ ︷︷ ︸
k=3,LLogs and k=2 NLLogs

+.. .

Therefore, the LLog coefficient on the left-hand side is related only to the two-particle

cut. Moreover, only the LLog part of the ππ-scattering amplitude can be taken into

account. The next order of logarithms are composed of multi-particle intermediate

states and NLLog parts of the lower states.

In the section II.1 we have considered the topological properties of the graphs

contributing to the LLog in a massless theory, now we can add to this consideration

the following observation. A graph can contain the LLog and, hence, the leading

pole, if it is 2-particle reducible. Moreover, the k-particle reducible graphs can

contain only Nk−2LLog or less.

Let us consider exp. (III.1-3). Our aim is to obtain the LLog coefficients of FF.

Thus, we neglect all terms on the right-hand side of eqn. (III.1-3) except the term

with k = 2. This term contains two factors. One of them is the scalar form factor

(III.1-1) and the other is the matrix element of ππ-scattering in isospin-0 channel.

By definition, the ππ scattering matrix element is

⟨πc(k1)πc(k2)|πa(p1)πb(p2)⟩ = I + i(2π)4δabδ(4)(k1 + k2 − p1 − p2)T 0(s, t), (III.1-5)

where I is the identity, T 0 is the ππ-scattering isospin-0 amplitude, s and t are usual

Mandelshtam variables for a 4-point function. To be precise, in the right-hand side

of exp. (III.1-3) we have (S − I)-matrix elements, whereas the definition (III.1-5) is

given for the S-matrix element. The integration over δ-functions can be easily done

in the center mass frame (c.m.f.) with p⃗ = −p⃗′,

2δabDiscF (s) =
iδab

8(2π)2
F ∗(s)

∫
d cos θ dφT 0(s, t), (III.1-6)

where cos θ = 1 + 2t
s
is the scattering angle in c.m.f. and φ is the azimuthal angle.
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Using the usual definition of the direct and backward partial wave decomposition:

T I(s, t) = 32π
∞∑
l=0

(2l + 1)Pl(cos θ)t
I
l (s), (III.1-7)

tIl (s) =
1

64π

∫ 1

−1
T I(s, t)Pl(cos θ) d cos θ,

one obtains the simple relation

DiscF (s) = iF ∗(s)t00(s) +O(multi-particle states). (III.1-8)

Let us suppose that the LLog coefficients of the ππ-scattering partial waves are

known:

tIl (s) =
π

2

∞∑
n=1

Ŝn
ωInl

2l + 1
lnn−1

(
µ2

−s

)
+O(NLLog). (III.1-9)

Substituting this expression together with exp. (III.1-2) (note, that according to our

definition, Disc ln
(

1
−s

)
= +iπ) into eqn. (III.1-8), and collecting the coefficients of

equal powers of F and logarithms, one obtains the relation between LLog coefficients

for the scalar FF

vn =
1

n

n−1∑
i=0

1

2
ω0
n−i,0vi. (III.1-10)

This equation is an analog of eqn. (II.4-63), but it is obtained without any loop-

calculation. Generally speaking, we have obtained the coefficient at the leading ln(s),

while in the previous chapter we have calculated the coefficient at the leading ln(µ2).

But since, there is no other dimensional parameters in the matrix element (III.1-1),

except s and µ2, the coefficients at ln(s) and ln(µ2) are equal. This trick works only

in the massless theories, because in the massive theories the term ln(µ2/m2) could

appear. Such terms are ”invisible” in the complex s-plane, but contribute to the

RG logarithm coefficient. In principle one can obtain the RG LLog behavior of the

massive theories with the help of the analytical continuation of the Green function

to the complex-mass plane.

The obtained equation (III.1-10) is more simple than eqn. (II.4-63) because

eqn. (III.1-10) is written in terms of the physical coefficients. In order to show the

equivalence of eqns. (III.1-10) and (II.4-63), one has to express the amplitude LLog

coefficients ωInl through the ”fundamental” RG coefficients ωnl. The amplitude of

the ππ scattering has the form (II.3-43), where the amplitudes A, B, and C in the

LLog approximation are (II.3-44), (II.3-50) and (II.3-51) respectively. The isospin

components of the ππ scattering amplitude in terms of subamplitudes A, B and C
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read

T 0(s, t) = NA(s, t) +B(s, t) + C(s, t),

T 1(s, t) = B(s, t)− C(s, t), (III.1-11)

T 2(s, t) = B(s, t) + C(s, t).

These expressions give the relations between the ”fundamental” LLog coefficient ωnC

and their isospin projections

ω0
n = ωn · (NI + UΩn + ΩnU),

ω1
n = ωn · (UΩn − ΩnU), (III.1-12)

ω2
n = ωn · (UΩn + ΩnU).

Substituting ω0
n into eqn. (III.1-10) one obtains eqn. (II.4-63). The anomalous

dimension, obtained in exp. (II.4-64) by the loop calculation, is the projector on the

isospin-0 component of the zero partial wave of the ππ-scattering amplitude:

Zn−i,C
S =

N

2
δC0 +

1 + (−1)C

2
ΩC0
n−i.

The consideration of the vector FF (II.4-66) can be done in the same way. The

equation for its LLog coefficients is

vn =
1

n

n−1∑
i=0

1

6
ω1
n−i,1vi. (III.1-13)

Thus, the anomalous dimension of the vector current is proportional to the isospin-1

projector (III.1-12)

Zn−i,C
V =

1 + (−1)C

6
ΩC1
n−i,

which is in agreement with the loop calculation of the previous chapter (II.4-68).

Although the obtained equations have passed many tests, we add one more ar-

gument to their correctness. The solutions of eqns. (III.1-10) and (III.1-13) can be

easily found in terms of generating functions (see appendix C.2 for details) defined

as

FS(V )(x) =
∞∑
n=0

vS(V )
n xn, (III.1-14)

WS(V )(x) =
∞∑
n=1

ω
0(1)
n0(1)

2(6)
xn−1. (III.1-15)

In terms of generating functions, recursive equations (III.1-10) and (III.1-13) turn
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into the ordinary integral Volterra equations of the second kind with the following

solution

FS,V (x) = e
∫ x
0 dyWS,V (y). (III.1-16)

The FF and the ππ-scattering amplitude at the LLog approximation are related to

the generation functions as following

FS,V (s) = (4π)2FS,V
(
Ŝ ln

(
µ2

−s

))
,

t
0(1)
0(1)(s) = πŜWS,V

(
Ŝ ln

(
µ2

−s

))
,

where we set 2B = 1 for the scalar FF. Therefore, the FFs at LLog approximation

can be expressed through the LLog approximation of ππ-scattering partial waves:

FS,V (q
2) = exp

[
1

π

∫ q2

0

ds

s
t
0(1)
0(1)(s)

(
ln

(
µ2

−s

)
− 1

)]
. (III.1-17)

Making algebraic transformations, one can show that this representation of FF coin-

cides with LLog approximation of the well-known Omnes solution for the dispersion

relations of FF [56]

FS,V (q
2) = exp

[
q2

π

∫ ∞
0

ds

s

δ
0(1)
0(1)(s)

s− q2 − iε

]
, (III.1-18)

where δ is the phase of the partial wave, i.e. tIl (s) = (2i)−1
(
e2iδ

I
l (s) − 1

)
. The

Omnes solution is an exact expression for FF in the infrared region. Thus, the

recursive equations give the correct infrared behavior of FF.

The similar consideration of FFs can be done in any model. The equations in

different models will be similar with (III.1-10,III.1-13), since the unitarity relation

and the analytical properties are universal conceptions.

III.2 LLog for ππ-scattering

The FF LLog coefficients vn are given by the recursive equation (III.1-10) through

the LLog coefficients ωInl of the partial wave tIl . However, the coefficients ωInl are

unknown. Let us extract them from the analytical properties of ππ-scattering am-

plitude.

It is possible to find the corresponding relations without specification of the

EFT. One has to fix only some general assumptions for the theory. The particular

realization of the EFT influences the initial values of the iteration procedure only.
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We constrain the group of the considered theories by the following assumptions:

• The interaction part of the Lagrangian is O(ϕ4), i.e. the lowest order interac-

tion term has four fields.

• All fields are massless.

• The lowest chiral order of the interaction is 2k, e.g. ϕ2∂2kϕ2. Note that k = 0

is the case of a pure renormalizable quantum field theory.

• The Lagrangian is invariant under some known global group G of the field

transformations.

Also, we assume that the space-time dimension D = 4. These constraints define

some quite general massless EFT, for example all massless σ-models satisfy these

conditions.

Let us consider the S-matric element of the 2→ 2 scattering

⟨ϕd(p4)ϕc(p3)|ϕb(p2)ϕa(p1)⟩ = I + i(2π)4δ4(p1 + p2 + p3 + p4)
∑
I

P abcd
I T I(s, t, u),

(III.2-19)

where I is the identity part of the process.

P abcd
I is the projector of the 2⊗2 product on the I’s invariant subspace of the par-

ticle representation. According to the Wigner-Eckart theorem it can be represented

as the convolution of two Clebsh-Gordon coefficients, see e.g.[57],

P abcd
I ≃

∑
j

C
(Ij)
(λa)(λb)C

(λc)(λd)
(Ij) ,

where λ is the number of the particle representation, the definition is given up to

the normalization constant. For example, the system of 2 pions, which are isospin-1

particles, can be composed of 0-,1- and 2-isospin states, which realize the invariant

subspaces. Note, that the 2⊗2 tensor can be in mixed representation, e.g. the proton-

pion scattering isospin structure has Adj×Fun -representation. For the compactness

of the notations, we will omit the summation sign over the group indices.

The basis of the projectors is orthogonal and complete

P ab,c′d′

I P d′c′,cd
I′ = δII′P

ab,cd
I , (III.2-20)∑

I

P ab,cd
I = δadδbc. (III.2-21)

The dimension of the invariant subspace dI can be obtained from the projector using

the relation

dI = P ab,ba
I . (III.2-22)
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The Bose and the Lorentz symmetries imply that the matrix element (III.2-19)

is invariant under the simultaneous permutation of particle indices and momenta.

That leads to the set of the crossing relations on the amplitudes AI , namely

T I(s, t, u) = CII′

st T
I′(t, s, u), (III.2-23)

T I(s, t, u) = CII′

tu T
I′(s, u, t), (III.2-24)

T I(s, t, u) = CII′

su T
I′(u, t, s). (III.2-25)

The crossing matrices are defined through the projector PI as follows

CII′

st = P ab,cd
I P cb,ad

I′
1

dI
, (III.2-26)

CII′

tu = P ab,cd
I P ba,cd

I′
1

dI
, (III.2-27)

CII′

su = P ab,cd
I P bd,ac

I′
1

dI
. (III.2-28)

The crossing matrices satisfy the relations: C = C−1 and CstCtu = CtuCsu.

The structure of singularities for the 2 → 2 amplitude is more difficult than the

structure of singularities for FF. In the complex s-plane the partial wave amplitude

tIl (s) has right (s-channel) and left (u-channel) singularities. In the chosen class of

theories the only presented singularities are cuts, since 1-particle intermediate state

would induce the interaction term with three fields and violate the first assumption

on the class of considering theories. In principle, the 1-particle intermediate states

can be induced by any odd-number operator, but such terms are subleading in our

consideration. If the interaction particles have equal masses m, the s-channel cuts

branching points are s2 = 4m2, s3 = 9m2 and so on, for the 2-,3-particle, and so on

cuts, respectively. The u-channel cuts branching points are uk = 4m2 − sk. In the

massless limit all branching points flow together at the origin, and the complex s-

plane become bisected onto two completely separated semi-planes. In order to avoid

this situation we always assume the presence of infinitesimal masses of the particles,

which leads to the tiny gap between s and u-channel singularities near the origin.

This allows us to operate with the dispersion relations and to make the analytic

continuation through this gap from the upper to the downer semiplane.

In the perturbative expansion the sources of the s-(u-)channel cuts are ln(s)

(ln(−s)). Therefore, we have to introduce the logarithms of these two types in the

expansion (III.1-9). The total power of the logarithms have to be kept unchanged.

The ”modified” perturbative expansion of the partial wave can be presented in the

following form

tIl (s) =
π

2

∞∑
n=1

Ŝn

2l + 1

n−1∑
i=0

αI,ln,i ln
i
(µ2

s

)
lnn−i−1

( µ2

−s

)
+O(NLLog), (III.2-29)
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where Ŝ = sk/(4πF )2. The RG logarithm coefficient ωInl is given by

ωInl =
n−1∑
i=0

αI,ln,i. (III.2-30)

The discontinuity over the s-channel cuts is given by the unitarity relation, which

is diagonal in the partial wave and the group subspace indices

Disc tIl (s) = |tIl (s)|2 +O(Inelastic part). (III.2-31)

The diagonality over the group subspace indices is the consequence of the orthog-

onality relation (III.2-20). Multi-particle intermediate states do not influence the

LLog part, which can be shown in the same way as in (III.1-4). Substituting exp.

(III.2-29) and comparing the coefficients at the terms Ŝn lnn−2(µ2/|s|), one obtains

the relation

n−1∑
i=0

(n− i− 1)αI,ln,i =
1

2(2l + 1)

n−1∑
i=1

ωIilω
I
n−i,l. (III.2-32)

Relation (III.2-32) does not fix the RG logarithm coefficient, (III.2-30). The

additional relation on α can be found from the discontinuity over the u-channel

cut. The latter can be found by the analytical continuation of the unitarity relation

(III.2-31) to the u-channel area.

A simple dispersion relation for the elastic scattering amplitude can be written

in the form

T I(s, t) =
1

π

∫
C

ds′
T I(s′, t)

s′ − s
(III.2-33)

=
1

π

∫ ∞
4m2

ds′
(

δII
′

s′ − s
+

CII′
su

s′ − 4m2 + t+ s

)
DiscT I

′
(s′, t),

where for the second equality exp. (III.2-25) was used. To be sure that the dispersion

relation is convergent one has to make the subtractions. However, the subtractions

do not influence the imaginary part of the amplitude but only on its real part. Thus,

we can omit this procedure.

In terms of partial waves (III.1-7) the dispersion relation (III.2-33) has the form

tIl (s) =
2l + 1

2π

∞∑
l′=0

∫ 0

4m2−s
dt

∫ ∞
4m2

ds′ (III.2-34)

Pl

(
1 +

2t

s− 4m2

)( δII
′

s′ − s
+

CII′
su

s′ − 4m2 − s− t

)
Pl′
(
1 +

2t

s′ − 4m2

)
Disc tI

′

l′ (s
′).

On the right-hand side of dispersion relation (III.2-34) the discontinuity is taken over
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the s-channel cuts. Therefore, the unitarity relation (III.2-31) can be used. Eqn.

(III.2-34) is an analog of the famous Roy equation for arbitrary symmetry group.

The original Roy equation was derived for the ππ-scattering amplitude in [58], or for

the SU(2)-symmetric models.

Taking the discontinuity of exp. (III.2-34) in the s < 0 region one obtains

Disc tIl (s) =
∞∑
l′=0

CII′

su

2(2l′ + 1)

s− 4m2

∫ 4m2−s

4m2

ds′ (III.2-35)

Pl

(s+ 2s′ − 4m2

4m2 − s

)
Pl′
(2s+ s′ − 4m2

4m2
π − s′

)(
|tI′l′ (s′)|2 +O(Inelastic part)

)
.

This is the analytic continuation of the unitarity relation (III.2-31) onto the u-channel

cut. Now the limit m2 → 0 can be taken.

Substituting ansatz (III.2-29) into eqn. (III.2-35) and collecting the coefficients

at the appropriate terms one obtains

n−1∑
i=0

iαI,ln,i =
kn∑
l′=0

CII′
su

2l′ + 1

n−1∑
i=1

ωI
′

il′ω
I′

n−i,l′(−1)l+l
′
Ωl′l
kn, (III.2-36)

where the matrix Ω was defined by exp. (II.3-48).

In eqn. (III.2-36) the matrix Ω appears as the LLog part of the integral∫ −s
0

ds′
s′n

s
lnn−2(

µ2

s′
)Pl

(s+ 2s′

−s

)
Pl′
(2s+ s′

−s′
)
=

−1
2l + 1

sn lnn−2
(
µ2

s

)
(−1)l+l′Ωl′l

n +O
(
sn lnn−3

(
µ2

s

))
.

Therefore, the matrix Ωn can be interpreted as the crossing matrix for the n-th

order of the chiral expansion of the partial wave tIl in the LLog approximation. The

matrix Ω performs the (s ↔ t) crossing transformation. The (t ↔ u) and (s ↔ u)

crossing transformations are performed by matrices U and UΩU respectively, where

the matrix U = diag{1,−1, 1, ...}. In such terms, exp. (III.2-35) has a simple

meaning: it is the crossing transformation of relation (III.2-31) simultaneously in

the group and momenta spaces.

The coefficients of the RG logarithm (III.2-30) are given by the sum of exps.

(III.2-32) and (III.2-36)

ωInl =
(1 + (−1)lCtu

2

)IJ 1

n− 1

n−1∑
i=1

kn∑
l′=0

(δll′
2

+ Csu(−1)l+l
′
Ωl′l
kn

)JI′ωI′il′ωI′n−i,l′
2l′ + 1

.

(III.2-37)

The factor 1
2
(1 + UCtu) makes the symmetrization over the (t ↔ u) parity. This is

the recursive equation for the LLog coefficient of the 2→ 2 scattering amplitude.
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Eqn. (III.2-37) is the complete analog of eqn. (II.3-36), which is the consequence

of the renorminvariance. Thus, in some sense, the RG evolution and RGEs are the

consequence of the amplitude analytic properties. The β-function of the theory is

just a combination of the crossing matrices. Using the fact that the first term in the

kernel of eqn (III.2-37) is invariant under the (t ↔ u) crossing symmetry, one can

rewrite eqn. (III.2-37) in the following form

ω⃗n =
1

n− 1

n−1∑
i=1

1

2
(I+ Cst + Csu) ω⃗iω⃗n−i, (III.2-38)

where C are the full crossing matrices, i.e. they perform the crossing transformation

in the momenta and group spaces simultaneously, ω⃗n is the vector in both spaces,

and we have subtracted the factor (2l + 1)−1 somewhere. In this form the analogy

with the one-loop diagrams in fig.II.3. is obvious: the factor one-half is the symmetry

factor of the diagrams and the crossing transformations transform the diagrams as

a whole.

In case of the renormalizable theory when k = 0, one has the simple expression

for the β-function of the coupling,

β =
1

2
(I + Cst + Csu), (III.2-39)

where we have used that Ω0 = 1. It is not the usual form of β-function defined in QFT

because the Lagrangian is not formulated in terms of the invariant subspaces, but

in terms of the crossing symmetrical linearly independent subspaces. The transition

to the Lagrangian degrees of freedom shows that our system of coefficients ωInl and

β-functions is overfulled. The Lagrangian is crossing-symmetrical by itself without

any addition specification. Therefore, eqn. (III.2-37) contains at least three times

more variables.

Eqn. (III.2-37) is diagonal in all auxiliary indices. That essentially decreases the

computer working time during the numerical calculations, in spite of the increasing of

the number of variables. It also gives some hope to solve eqn. (III.2-37) analytically.

At this point we want to add some circumstances which may play a key role for a

possible solution. The kernel of eqn. (III.2-38) has projector properties in an appro-

priate space, i.e. β × β = 3
2
β, which can be easily seen in the renormalizable version

of kernel (III.2-39). Moreover, since the β-functions is a projector, the coefficients

ω are invariant under the multiplication on any crossing matrix in both isospin and

partial wave spaces. This invariance fixes most parts of the values of the different

partial and iso-spin components ωInl’s at the same order n. However, it does not fix

the dependence completely, and the number of independent ω’s still grows with n.

Such consideration implies the equations with many symmetries, which are (in our

opinion) easier solvable.
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Models with mixed renormalizable and non-renormalizable interactions

Let us consider the theory with mixed renormalizable and non-renormalizable inter-

actions. The Lagrangian of such a theory has two interaction terms, with k = 0

(renormalizable term) and with k > 0 (non-renormalizable term). Let λ( 1
F 2 ) be a

coupling of the (non-)renormalizable part of the initial Lagrangian. The renormal-

izable interaction can only have the following form T abcdϕaϕbϕcϕd, where T abcd is a

group tensor.

The perturbative expansion in such a mixed theory is a double expansion over

the dimensional parameter Ŝ and the dimensionless coupling λ. Using the partial

wave parametrization one can write the perturbative expansion in the form

T I(s, t, u) = (4π)2
∞∑

n,m=0

kn∑
l=0

Ŝnλ̂m × (III.2-40)

n+m−1∑
i=0

αI,lm,n,i ln
i
(µ2

s

)
lnn+m−1−i

( µ2

−s

)
Pl

(
1 +

2t

s

)
+O(NLLog),

where λ̂ = λ
(4π)2

, and αI,l00l ≡ 0. The analytical properties of the amplitude do not

depend on the ”intrinsic” structure of the Lagrangian. Hence, repeating the discourse

of the previous section for the series (III.2-40) one obtains that the LLog coefficients

ωInml satisfy the equation

ωInml =

(
1+(−1)lCtu

2

)IJ
n+m− 1

n,m∑
i,j=0

kn∑
l′=0

(δll′
2

+ Csu(−1)l+l
′
Ωl′l
kn

)JI′ ωI′ijl′ωI′n−i,m−j,l′
2l′ + 1

,(III.2-41)

where ω00l ≡ 0.

Pure renormalizable and pure non-renormalizable parts are split up in the equa-

tion, i.e. the coefficients ωIn0l and ω
I
0m0 are not mixed in eqn. (III.2-41) with other

coefficients. Indeed, one can not obtain the dimensionless result from the diagram

with any dimensional non-renormalizable vertex, and visa versa, the highest dimen-

sional contribution can not be fulfilled in the presence of the dimensionless λ. One

can see that in the cases m(n) = 0, eqn. (III.2-41) is the usual ”one-parameter-

expansion” equation (III.2-37) with k = 0(k).

The structure of eqn. (III.2-41) reflects the renormalization structure of the the-

ory. In a such mixed theory, although it is still non-renormalizable, the β-functions

contain infinite number of terms. We have not met such structure yet, since the

dimensional object can be constructed from other dimensional objects in a finite

number of manners, e.g. (II.2-12). In the presence of the additional renormalizable

vertex, one can couple an infinite ”tail” of the renormalizable graphs to every graph.

The trace of the partial-renormalizabillity of the theory is the m-independence of

eqn. (III.2-41) kernel. Using this property the renormalizable part can be resumed
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at every order of the ”non-renormalizable” expansion over Ŝ. Let us demonstrate

the resummation technique on the equation of (III.2-41)-type, but without auxiliary

indices:

ωn,m =
1

n+m− 1

n,m∑
i,j=0

βnωi,jωn−i,m−j. (III.2-42)

Introducing the generation function ωn(x) =
∑∞

m=0 x
n+m−1ωn,m for the renormaliz-

able part, one obtains the integral equation (the similar equations are considered in

appendix C.2 in details)

ωn(x)− ωn(0) =
∫ x

0

n−1∑
i=1

βnωi(y)ωn−i(y) dy.

The boundary conditions for the equation are ω0(0) = ω0,1, ω1(0) = ω1,0 and

ωn>1(0) = 0. The first two iterations give

ω0(x) =
ω0,1

1− β0x
, ω1(x) =

ω10

(1− β0x)β1/β0
.

The function ω0, which describes the pure renormalizable part of the interaction,

reproduces the usual renormalizable running of the 4-point amplitude at the LLog

approximation. The higher orders of the resumed non-renormalizable expansion can

be found recursively,

ωn(x) =

∫ x

0

n−1∑
i=1

ωi(y)ωn−i(y)

(
1− β0ω0,1y

1− β0ω0,1x

)βn/β0
.

The auxiliary indices makes the equation more complicated, but the summation

scheme remains unchanged.

The theories in D > 4 dimensions For the consideration of a theory in the

D > 4 space-time dimensions we have to generalize the partial wave basis. The

complete and orthogonal basis in the (D − 1)-dimension space is the basis of the

Gegenbauer polynomials, [80]. We define the partial wave expansion in an arbitrary

even dimension D as

T I(s, t) = 64π
∞∑
l=0

2l +D − 3

2

Γ
(
D−3
2

)
√
π

C
D−3
2

l (cos θ)tIl (s), (III.2-43)

tIl (s) =
1

64π

∫ π

0

sinD−3 θ
Γ
(
D−3
2

)
√
π

2D−4l!

Γ(l +D − 3)
T I(s, cos θ)C

D−3
2

l (cos θ)dθ,
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where C
D−3
2

l (z) is a Gegenbauer polynom. At D = 4 these relations are equal to

the usual partial wave decomposition (III.1-7). The unitarity relation for the D-

dimensional partial waves has the form

ImtIl (s) = π
D−4
2

(
s

(4π)2

)D−4
2

|tIl (s)|2 +O(Inelastic part), s > 0. (III.2-44)

The detailed derivation of the unitarity relation (III.2-44) can be found in Appendix

D. The crossing relations (III.2-23)-(III.2-25) do not depend on the space-time di-

mension, therefore, the evaluation of the discontinuity over the u-channel cut is

straightforward. One obtains (s < 0)

Im tIl (s) =
∞∑
l′=0

CII′

su

2D−3(2l′ +D − 3)

Γ(l +D − 3)

Γ2
(
D−3
2

)
π

l!

∫ 4m2−s

4m2

ds′

s− 4m2
× (III.2-45)

[4s′(4m2 − s− s′)
(s− 4m2)2

]D−4
2
C

D−3
2

l

(s+ 2s′ − 4m2

4m2 − s

)
C

D−3
2

l′

(2s+ s′ − 4m2

4m2 − s′
)
Im tI

′

l′ (s
′).

At an arbitrary space-time dimension D a diagram, which contributes to the per-

turbative expansion, has the momenta dimension dictated by exp. (I.1-6). Therefore,

the perturbative expansion of the scattering amplitude can be written in the form

T I(s, t) =
2D−4(4π)

D
2 Γ
(
D−3
2

)
√
π

· (III.2-46)

∞∑
n=1

nk+D−4
2

(n−1)∑
l=0

Ŝns
d−4
2

(n−1)ωInl ln
n−1
(µ2

|s|

)
C

D−3
2

l

(
1 +

2t

s

)
+O(NLLog),

Ŝ =

√
πsk

(4π)
D
2 2D−4Γ

(
D−3
2

)
F 2
.

Substituting T I into eqns. (III.2-44) and (III.2-45) one obtains that the LLog coef-

ficients ω satisfy the relation

ωInl =
(1 + (−1)lCtu

2

)IJ
· (III.2-47)

1

n− 1

n−1∑
i=1

nk+D−4
2

(n−1)∑
l′=0

(δll′
2

+ Csu(−1)l+l
′
Ωl′l
nk+D−4

2
(n−1),D

)JI′ ωI′il′ωI′n−i,l′
2l′ +D − 3

,

where Ωn,D is the straightforward generalization of the crossing matrix Ωn to the

arbitrary D dimension (its properties and explicit form can be founded in Appendix
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B.2)

ΩAB
n,D =

2B +D − 3

2

2D−4B!

Γ(B +D − 3)

Γ2
(
D−3
2

)
π

(III.2-48)∫ 1

−1
(1− z2)

D−4
2

(z − 1

2

)n
C

D−3
2

A

(z + 3

z − 1

)
C

D−3
2

B (z)dz.

Note, that the volume factor Γ((D−3)/2)√
π

in definition (III.2-46) is already subtracted

from the β-function in eqn. (III.2-47).

The dimensional regularization gives the final result only in the area of one par-

ticular value of D although it operates with a formally arbitrary D. Eqn. (III.2-47)

gives us the possibility to investigate the perturbative expansion at the truly arbi-

trary D.

Relation between ω’s The important technical question is how to compare the

results obtained in the ”physical” terms ωInl with the ”fundamental” ones, which are

used in the loop calculation (II.3-44).

The result of the perturbative calculation is proportional to some linear combi-

nation of the invariant subspaces:

⟨ϕc(p4)ϕd(p3)|S − I|ϕb(p2)ϕa(p1)⟩ ∼
∑
j

R̃abdc
j Aj(s, t, u), (III.2-49)

where R̃ denotes the structures of the Lagrangian. For example, the Lagrangian of

O(N) model (II.3-43) contains the structure δabδcd and its crossing combinations.

Another example is SU(N)-symmetric Lagrangian (II.5-80), it has six independent

combinations of Kronecker deltas and structure constants dabc.

Exp. (III.2-49) has to be in the crossing symmetric form, since it is the S-matrix

element. Therefore, we can rewrite it as

⟨ϕc(p4)ϕd(p3)|S − I|ϕb(p2)ϕa(p1)⟩ ∼
∑
j

(
Rabdc
j Aj(s, t, u) +Rabcd

j Aj(s, u, t)

+Radbc
j Aj(u, t, s) + 21 combinations

)
.(III.2-50)

There are 24 possible index combinations and eight momenta combinations, because

the simultaneous interchange of the two fields in the same channel changes nothing

in the momenta structure, but gives another index structure. Often the coefficients

R are symmetric over this interchange, but it is not a general case. For example, the

amplitude in a matrix model (II.5-83) is not (u↔ t)-symmetrical.

Under the crossing transformation, the coefficients ω transform with the help of

the crossing matrices Ω and U , see the details in the text after eqn. (III.2-36). Using

the properties of matrices Ω (II.3-49) and the orthogonality of PI-basis one finds the
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relations between the LLog coefficients of amplitudes (III.2-50)(ωn(j)) and the LLog

coefficients of amplitudes of invariant subspace (ωIn) (III.2-19):

ωIn =
1

dI

∑
j

ωn(j) · P(j)In, (III.2-51)

where j enumerates independent charges of a theory. The coefficients P (j)In are given

by the following expression

P(j)In =
(
AIjI + ÃIjU +BI

jU · Ωn + B̃I
jΩn + CI

jΩn · U + C̃I
jU · Ωn · U

)
,(III.2-52)

where

AIj = P dc,ba
I

(
Rabcd
j +Rbadc

j +Rdcba
j +Rcdab

j

)
,

ÃIj = P dc,ba
I

(
Rabdc
j +Rbacd

j +Rdcab
j +Rcdba

j

)
,

BI
j = P dc,ba

I

(
Radbc
j +Rbcad

j +Rdacb
j +Rcbda

j

)
,

B̃I
j = P dc,ba

I

(
Radcb
j +Rbcda

j +Rdabc
j +Rcbad

j

)
,

CI
j = P dc,ba

I

(
Racdb
j +Rbdca

j +Rdbac
j +Rcabd

j

)
,

C̃I
j = P dc,ba

I

(
Racbd
j +Rbdac

j +Rdbca
j +Rcadb

j

)
.

III.3 O(N)-type models

The fascination of the presented method is that for the investigation of different

models with the same type of symmetry one needs to calculate only one algebraic

object, namely, the crossing matrices. As an example, let us consider the simplest

symmetry configuration. Let the fields ϕ be in the fundamental representation of

O(N)-group. For such a class of models we have several checking points, namely:

• The renormalizable modelO(N)-symmetric ϕ4-model is given by the Lagrangian

L = −1

2
ϕa∂2ϕa − λ

8
ϕ2ϕ2, (III.3-53)

and its LLog behavior is well-known, e.g. [59],[81].

• The O(N + 1)/O(N) σ-model (II.2-5) at the finite order of the Lagrangian

expansion also can be treated as the O(N)-symmetrical model

L2 = −
1

2
ϕa∂2ϕa − 1

8F 2
ϕ2∂2ϕ2 +O(π6). (III.3-54)

This model was considered in the previous chapter by the RG method. There

are many other independent points of its checking, see the list of them after

exp. (II.2-6).
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• The large-N behavior of O(N)-symmetric models is well-investigated. Dia-

grammatically the large-N limit is given by the chain diagram, see fig.2.5.

There are three invariant subspaces of the Fund. × Fund. tensor on the O(N)-

group. We enumerate these subspaces by the index I = 0, 1, 2. Such naming corre-

sponds to the value of the isospin in s-channel for the case N = 3. The projectors

on invariant subspaces are

P ab,cd
0 =

1

N
δabδcd, (III.3-55)

P ab,cd
1 =

1

2
(δadδbc − δadδbc),

P ab,cd
2 =

1

2
(δadδbc + δadδbc)− 1

N
δabδcd.

The dimensions of these subspaces are

d{0,1,2} =

{
1,
N(N − 1)

2
,
(N + 2)(N − 1)

2

}
.

After simple algebraic operations one obtains the crossing matrices (III.2-26)-(III.2-

28)

Ctu =

1 0 0

0 −1 0

0 0 1

 , Cst =


1
N

N−1
2

Ñ
2N

1
N

1
2
−N+2

2N
1
N
−1

2
N−2
2N

 , Csu =


1
N
−N−1

2
Ñ
2N

− 1
N

1
2

N+2
2N

1
N

1
2

N−2
2N

 ,

(III.3-56)

where Ñ = N2 +N − 2.

Substituting matrices (III.3-56) into eqn. (III.2-47) one obtains the LLogs coeffi-

cients for the required theory. The relation between the ”physical” and ”fundamen-

tal” LLog coefficients is given by (III.2-51). There is only one combination of indices

in the O(N) symmetric Lagrangians (see e.g. (III.3-53))

Rab,dc = δabδcd.

Using relation (III.2-52) one finds the list of projectors of the amplitudes A on the

amplitudes T I , namely (compare with (III.1-11) and (III.1-12))

P0
n =

(
I + U

)
·
(
NI + U · Ω + Ω · U

)
, (III.3-57)

P1
n =

(
I + U

)
·
(
U · Ω− Ω · U

)
,

P2
n =

(
I + U

)
·
(
U · Ω + Ω · U

)
.

From this expression it follows that the ”fundamental” LLog coefficient that gives

the LLog evolution of the coupling constant, relates to the coefficients, which give
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the LLog behavior of the amplitudes, as follows:

ωnl =
ω0
nl − ω2

nl

N
. (III.3-58)

The analytic properties of the amplitude fix only the relations between the log-

arithm coefficients (III.2-37), which have to be satisfied unless the unitarity would

be broken. The particular values of the coefficients are dictated by the initial values

of the iteration. The initial values on their own turn are consequences of the tree

order of the amplitude. The Lagrangian can be always redefined in such a way that

ω10 = 1 (and ω1,l ̸=0 = 0). That satisfies the definition of the coupling constant with

the coefficients 1
8
, e.g. (II.3-37),(III.3-53). The boundary conditions for eqn. (III.2-

37) depend on the parameters k and D of the theory. For example, for k = 1 from

(III.3-57) one obtains that

ω0
10 = N − 1, ω0

11 =
1

D − 3
, ω2

10 = −1, (III.3-59)

and all other ωI1l = 0.

With the help of relation (III.3-58) one can rewrite eqn. (III.2-37) in form of eqn.

(II.3-36). The result completely agrees with the calculations of β-function (II.3-52)

in the previous chapter.

Let us consider the renormalizable ϕ4 model in D = 4, (III.3-53). In this case the

main index of matrix Ω is zero. Using Ωl′l
0 = δl0δl

′0, one finds that only zero-partial

waves appear in eqn. (III.2-37). The β-function is a number

β =
N + 8

2
.

This result is well-known, e.g. [59]. The β-function does not depend on n, as it should

be in the renormalizable theory. Thus, the solution of eqn. (II.3-36) is ωn = βn−1ωn1 .

That leads to the LLog behavior of the 4-point amplitude

A(s, t) =
∞∑
n=1

ωnλ
n lnn−1

(
µ2

|s|

)
=

λ

1 + N+8
2(4π)2

λ ln
(
µ2

|s|

) ,
which coincides with the LLog running of the coupling λ.

At N = 1 the O(N) group space contains only one element, which corresponds

to the zeroth invariant subspace. At k = 1 the boundary condition for the iterations

is ω0
1 = 0, (III.3-59). Therefore, all LLog coefficients are zero and the tree order is

also zero. Indeed, at k = 1 the O(N) σ-model is a free theory in any space-time

dimension.



SU(N)-type models 73

It is also interesting to consider the case of the ϕ4-model in D dimensions, i.e.

we put N = 1 and k = 0. The recursive equation can be rewritten in the form

ωnl =
1

n− 1

n−1∑
i=1

D−4
2

(n−1)∑
l′=0

ωi,l′ωn−i,l′

2(2J +D − 3)

(
I + Ω d−4

2
(n−1) + UΩ d−4

2
(n−1)U

)l′l
(III.3-60)

with the initial value ω10 = 3.

This equation has simple symmetry properties. Its solution is invariant under the

multiplication on Ω or UΩU . This is the trace of the complete crossing symmetry of

the amplitude. The amplitude A(s, t, u) is a symmetric function in all its variables.

This invariance is explicitly presented in the momentum expansion of the amplitude,

i.e. in the Tailor expansion over s and t. We define the LLog coefficient χnk as a

coefficient instead of tks
(D−4)

2
(n−1)−k structure in the amplitude. The transition from

ω to χ and back is given by

χnk =

D−4
2

(n−1)∑
l=k

4lΓ
(
D−3
2

+ k
)
Γ (l + k +D − 3)

k!Γ
(
D−3
2

)
Γ(2k +D − 3)(l − k)!

ωnl (III.3-61)

ωnl =

D−4
2

(n−1)∑
k=0

Ω0,l
k,Dχnk.

Thus, the symmetry of eqn. (III.3-60) leads to the two constrains on χ:

χn,k = χn,n−k, χnk =
n∑

k=α

(−1)k
(
k

α

)
χnα.

In particular, from this expression follows that at D = 6 the one-loop correction

is a totally symmetric function of (s, t, u). Therefore, it is zero, since (s+ t+u) = 0.

There are no LLog corrections to the 4-point amplitude at D = 6 and, indeed, the

equation for ω gives zeros at D = 6 at all orders.

In appendix E we present the tables of the values of the LLog coefficients ωInl if

the O(N + 1)/O(N) σ-model and ϕ4-model are in D = 6.

III.4 SU(N)-type models

For the completeness let us give the expressions for the needed ingredients of the

recursive equation in the SU(N)-symmetric models. Let us consider the fields in the

adjoint representation of SU(N) group, e.g. the Lagrangian of massless ChPT (II.5-

79). The Adj×Adj space has seven invariant subspaces. These are (anti)symmetric

subspaces, trace(less) subspaces, and subspaces with a mixture of the symmetries

(the full procedure of decomposition can be found in [57]). The projectors can be
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built as following

P ab,cd
1 =

1

N2 − 1
δabδcd, (III.4-62)

P ab,cd
2 =

2N

N2 − 4

(
⟨abcd⟩+ ⟨abdc⟩+ ⟨bacd⟩+ ⟨badc⟩ − 1

N
δabδcd

)
,

P ab,cd
3 =

1

4

(
δadδbc + δacδbd

)
− 1

2N(N − 1)
δabδcd − 1

2

(
⟨acbd⟩+ ⟨bcad⟩+ ⟨adbc⟩+ ⟨bdac⟩

)
− 1

N − 2

(
⟨abcd⟩+ ⟨abdc⟩+ ⟨bacd⟩+ ⟨badc⟩ − 1

N
δabδcd

)
,

P ab,cd
4 =

1

4

(
δadδbc + δacδbd

)
− 1

2N(N + 1)
δabδcd

+
1

2

(
⟨acbd⟩+ ⟨bcad⟩+ ⟨adbc⟩+ ⟨bdac⟩

)
− 1

N + 2

(
⟨abcd⟩+ ⟨abdc⟩+ ⟨bacd⟩+ ⟨badc⟩ − 1

N
δabδcd

)
,

P ab,cd
5 =

2

N

(
⟨abcd⟩ − ⟨abdc⟩ − ⟨bacd⟩+ ⟨badc⟩

)
,

P ab,cd
6 =

1

4

(
δadδbc − δacδbd

)
+

1

2

(
⟨acbd⟩ − ⟨bcad⟩ − ⟨adbc⟩+ ⟨bdac⟩

)
− 1

N

(
⟨abcd⟩ − ⟨abdc⟩ − ⟨bacd⟩+ ⟨badc⟩

)
,

P ab,cd
7 =

1

4

(
δadδbc − δacδbd

)
− 1

2

(
⟨acbd⟩ − ⟨bcad⟩ − ⟨adbc⟩+ ⟨bdac⟩

)
− 1

N

(
⟨abcd⟩ − ⟨abdc⟩ − ⟨bacd⟩+ ⟨badc⟩

)
,

where ⟨abcd⟩ = tr(tatbtctd), ta is the generator of the SU(N) group. The dimension

of the invariant subspaces can be founded with the help of exp. (III.2-22)

dI =

{
1, N2 − 1,

N2(N + 1)(N − 3)

4
,
N2(N − 1)(N + 3)

4
,

N2 − 1,
(N2 − 4)(N2 − 1)

4
,
(N2 − 4)(N2 − 1)

4

}
.
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Therefore, the crossing matrices are

Csu =



1
N2−1 1 (N−3)N2

4(N−1)
N2(N+3)
4(N+1)

−1 1− N2

4
1− N2

4
1

N2−1
N2−12
2(N2−4) −

(N−3)N2

4(N2−3N+2)
N2(N+3)

4(N2+3N+2)
−1

2
1
2

1
2

1
N2−1

1
2−N

N2−N+2
4N2−12N+8

N+3
4N+4

− 1
N

N+2
4N

N+2
4N

1
N2−1

1
N+2

N−3
4(N−1)

N2+N+2
4N2+12N+8

1
N

N−2
4N

N−2
4N

1
1−N2 −1

2
− (N−3)N

4(N−1)
N(N+3)
4(N+1)

1
2

0 0
1

1−N2
2

N2−4
(N−3)N

4(N2−3N+2)
N(N+3)

4(N2+3N+2)
0 1

4
1
4

1
1−N2

2
N2−4

(N−3)N
4(N2−3N+2)

N(N+3)
4(N2+3N+2)

0 1
4

1
4


,

(III.4-63)

Ctu =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 0 −1
0 0 0 0 0 −1 0


. (III.4-64)

There are two independent structures invariant under the SU(N)-transformation,

namely T abcd1 = ⟨abcd⟩ and T abcd2 = ⟨ab⟩⟨cd⟩. Their LLog coefficients are given by ωn

and vn for T1 and T2 respectively. The coefficients ωn and vn satisfy eqn. (II.5-81).

The correspondence between ωn(vn) and ω
I
n is given by exp. (III.2-51) with

A1 = Ã1 =



N − 1
N

N
2
− 2

N

0

0

0

0

0


, B1 = B̃1 =



N
2
− 1

N
n
4
− 2

N

−1
2

1
2
N
4

0

0


, C1 = C̃1 =



N
2
− 1

N
N
4
− 2

N

−1
2

1
2

−N
4

0

0


,

A2 = Ã2 =



N2 − 1

0

0

0

0

0

0


, B2 = B̃2 =



1

1

1

1

1

1

1


, C2 = C̃2 =



1

1

1

1

−1
−1
−1


.
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From this correspondence, one obtains the inverse relation between ”fundamental”

and ”physical” LLog coefficients

ωn =
1

4

( 4

N

(
ω5
n − ω6

n

)
+ ω4

n − ω3
n

)
· Ωn, vn =

1

8

(ω3
n + ω4

n

2
+ ω6

n

)
· Ωn.

A direct calculation shows that the numbers obtained by eqns. (II.5-81)) and

(III.2-37) coincide. We stress that although crossing matrices (III.4-63)-(III.4-64)

are large, the direct loop-calculation of β-functions is more difficult.

Let us consider the large-N limit of the SU(N)-symmetric theories. In the previ-

ous chapter we have already considered this limit and we found that the coefficient

vn is subleading, and the large-N behavior of coefficients ω is given by β-function

(II.5-82). The large-N limit of the SU(N)-theories is given by the interaction of

I = 2 and I = 5 subspaces (note that the ωI have different N order, which has to

be taken into account). The crossing matrix, which describes the large-N behavior

of ω2(5), is

CLarge N
su =

(
1
2
−1

2

−1
2

1
2

)
. (III.4-65)

This matrix is singular. Therefore, it does not corresponds to any ”usual” bosonic

theory.

The coefficients ωI=2 (ωI=5) have only even (odd) components in partial wave

basis. Combining these coefficients in one, ωLarge−Nnl = ωI=2
nl +ωI=5

nl

∣∣∣
Large−N

we rewrite

eqn. (III.2-37) with the matrix (III.4-65) in the form

ωLarge−Nnl =
1

2(n− 1)

n−1∑
i=1

n∑
l′=0

ωLarge−Nil′ ωLarge−Nn−i,l′

2l′ + 1

(
δl

′l + Ωl′l
n

)
, (III.4-66)

with the initial value for the iteration ωLarge−N1l = {1, 1}. Comparing eqn. (III.4-66)

with the general exp. (III.2-38) we can guess that the effective theory for SU(N)

large-N LLogs is a theory with one-component field. The β-function for such a the-

ory is given by the first two diagrams in fig.II.3. This situation is typical for the

four-fermionic interaction where the u-channel diagram is zero due to the anticom-

mutativity of the fields. Therefore, we suppose that the effective theory for SU(N)

large-N LLogs would be a theory with the scalar Grassman fields.

The large-N limit of O(N)-symmetric theories was given by the interaction of

only the I = 0 component of the vertices, i.e the large-N limit can be obtained by

projecting the graph and every of its vertex on the 0-th subspace and forcing all

other vertices to be zero. It corresponds to the switching off all diagrams except for

the chain diagrams. For the SU(N)-theories one has to keep I = 2, 5 components.

Note that in the usual notation the projectors P ab,cd
2(5) are dabkdkcd (fabkfkcd), where
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dabc(fabc) are (anti)symmetric SU(N) structure constants.

III.5 Discussion

The method of obtaining the LLog coefficients through the analytic properties of

the amplitude presented in the current chapter is independent from the RG method

discussed in the previous chapter. In comparison with the RG method the ”analyt-

ical” method has the following advantages: one does not need to perform the loop

calculation and the resulting recursive equation (III.2-37) is diagonal in all auxiliary

indices. Both these advantages make the usage of ”analytical” method preferable in

comparison to the RG method. However, the analytical extraction of the LLog seems

to be possible only for the physical amplitudes, i.e. Green functions can not be con-

sidered within this framework. Also the area of applicability of the presented method

is restricted to the ϕ4-type theories, since the three-particle massless amplitudes have

no physical domain of kinematic.

In the thesis only the theories in the evenD > 4 dimensional space are considered.

However, the presented method allows one to consider the D = 2 and odd-D theories

as well. This would be a very good application for the method, since the direct

calculation of the IR asymptotic behavior of the perturbative expansion in the odd-

D spaces is a difficult and still not completely investigated task.

The multi-particle amplitudes can be also considered with the help of the ana-

lytical properties. The main difficulty for this consideration is to find an expression

for a would-be partial wave decomposition in the multi-particle kinematics and their

properties in the complex-s plane. Note, that the unitarity relation is quadratic

for any process. Therefore, the recursive equations on the LLog coefficients in the

”physical” variables (at least at LLog approximation) will be also quadratic. In that

way, the equation for the 6π-scattering amplitude LLog coefficients, considered in the

previous chapter (II.6-93), can be expressed in the ”quadratic” form, i.e. R ∼
∑
ωR,

where R is given by exp. (II.6-92). From the RG point of view that means that the

β-functions (β and β̃ in eqn. (II.6-93)) are strongly related to each other.

The usage of the partial wave basis is not crucial for the discussion. Its preference

is in the diagonality of the unitary relation. One can use any convenient decompo-

sition of the amplitude. The example of another decomposition is the double Taylor

decomposition over s and t. In this case the coefficients ω are transformed to the co-

efficients χ by exp. (III.3-61). The resulting recursive equation for χ is not diagonal.

Another interesting example of the amplitude decomposition is the cone-function

decomposition. In the cone expansion one has the continuous parameter µ instead

of the discrete index l, and the unitarity relation is also diagonal [60]. Therefore, we

expect the diagonal integral equation for the LLog coefficients for this basis.
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Application of LLog summation to

the hard processes

The hard processes are a wide class of the reactions which probe the intrinsic struc-

ture of the hadrons. These processes are described by the partonic distributions.

Using an EFT one can perform the systematic expansion of the partonic distribu-

tions over the soft kinematic parameters, such as masses, soft momentum transfer,

etc. However, the non-local structure of the matrix element induces the terms with

an explicit singularity which order increase along with the expansion order. These

singular terms strongly dominate in the low-x region and can result in unexpected

singularities in the scattering amplitude. Therefore, one has to resum them at all or-

ders. The resummation can be done with the help of the LLog calculation technique

described in the previous chapters.

In the present chapter, we review the basics of the EFT applications to the

hard processes. We present the detailed calculation of the singular contributions

to the pion PDF and GPD within the framework of the O(N + 1)/O(N) σ-model.

We show that summation of singular terms produces the smooth function, which

describes the dominant at small-x and/or large-b⊥ contribution to PDF and GPD.

We present the detailed investigation of the properties and the numerical estimations

for the resummed singular part of the parton distributions.

IV.1 Hard processes and ChPT

The hard processes are the wide class of the processes with participation of the

hadrons at high energies. The main goal for considering of these processes is the

investigation of the hadron structure. There are plenty of reviews and textbooks on

78
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Figure IV-1: The GPD kinematic agreement.

this topic, e.g. [63],[64],[65],[66]. In the present section, we review only some basics

which are needed in our consideration. For concreteness we consider the deeply

virtual compton scattering (DVCS): γ∗h → γh, as a typical example of the hard

processes.

In DVCS the role of hard momentum is played by the momentum of the incoming

photon: −q2 = Q2 ≫ Λ2
QCD,M

2
h , .. . The presence of the large external scale allows

one to interpret the process as the scattering of the photon on an individual parton

(quark or gluon) from the hadron. This statement can be formulated in the form

of the well-known factorization theorem, e.g. [61]. The factorization theorem reads

that the amplitude of a hard process can be presented as the convolution of the soft

and hard parts,

A(Q2, P, µ2,M2, ..) = C(Q2, µ2)⊗O(µ2, P,M2, ..),

where C is the coefficient function and O is the soft part. The coefficient function

C depends only on the hard scale and can be calculated within the framework of

the QCD perturbative expansion. The soft part can not be obtained within the

perturbative QCD and has to be parameterized. Both parts depend on the QCD

evolution parameter µ2, and their QCD evolution can be obtained with the help of

the renormalization group.

The DVCS amplitude at the leading order has the following form (up to numerical

constant)

A = α

∫ 1

−1

H(x, ξ, t)

ξ − x− iε
dx+O(α2, Q−2), (IV.1-1)

where ξ = (p−p′)+
(p+p′)+

, p(p′) is the incoming(outgoing) momentum of the hadron (see

fig.4.1), p+ is its projection on the light-cone direction n, n2 = 0, t = (p− p′)2, and
H(x, ξ, t) is the generalized parton distribution (GPD) of the hadron.

The GPD is the Fourier transformed matrix element of the non-local light-cone

operator

H(x, ξ, t) =

∫
dλ

2π
e−ixPλ⟨h(p′)|Ô(λ)|h(p)⟩, (IV.1-2)
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where P = 1
2
(p+ p′)+. The twist-2 operator has the following form

Ô(λ) = q̄

(
λn

2

)
W [

λn

2
,−λn

2
]γ+q

(
−λn

2

)
,

where W [x, y] is the Wilson line from x to y.

There are several exceptional values of the GPD arguments:

• The forward limit of GPD is the parton distribution function (PDF),

H(x, 0, 0) = q(x). (IV.1-3)

PDF is a more simple object, which appears in many hard reactions, e.g. deep

inelastic scattering, Drell-Yan process. PDF is interpreted as the probability

to find the parton with momentum fraction x inside the hadron.

• At ξ = 0, GPD provides information on the transverse position of partons.

The Fourier transform

H(x, b⃗⊥) =

∫
d2∆

(2π)2
H(x, 0,−∆2)e−i∆⃗b⃗⊥ , (IV.1-4)

has the meaning of the probability density to find the parton with the given

momentum fraction x and with coordinate b⃗ in the transverse plane.

• The imaginary part of the DVCS amplitude, which is observable by itself, is

given by the GPD slice at x = ξ, i.e.

ImA(ξ, t) = H(ξ, ξ, t). (IV.1-5)

GPDs differ by quantum numbers and hadronic brackets. In the thesis we discuss

the pion GPD and PDF only.

For the application of EFT to parton distribution one has to match the non-local

light cone QCD operator to an operator formulated in EFT degrees of freedom. Let

us consider left and right twist-2 quark operators on the light cone:

OL
fg(λ) = q̄g

(
λn

2

)
n/

1 + γ5
2

qf

(
−λn

2

)
, (IV.1-6)

OR
fg(λ) = q̄g

(
λn

2

)
n/

1− γ5
2

qf

(
−λn

2

)
.

Here, the vector nµ is the light-cone vector, n2 = 0, and f , g stand for flavour indices.

The Wilson line along the straight line between the points (λn/2) and (−λn/2) is

assumed. In terms of effective degrees of freedom the operators (IV.1-6) have the
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form

OL,R(λ) = F ⊗OL,R
eff (λ) , (IV.1-7)

where OL,R
eff (λ) is an effective hadronic operator with the same quantum numbers

(but not necessarily with the same twist) as quark operators (IV.1-6) and F is the

generating function for the c-number coefficients, which are input for the EFT.

For the description of the pion interactions we will use the two-flavor chiral La-

grangian,

L2 =
F 2
π

4
tr
[(
∂µU∂µU

†)+m2
π

(
U + U †

)]
. (IV.1-8)

The mπ and Fπ in the chiral Lagrangian (IV.1-8) are the physical values of the pion

mass and decay constant. The difference between the physical and bare values of

constants is irrelevant for our discussion, since we are going to consider the LLog

approximation only.

The SU(2) matrix U in eqn. (IV.1-8) can be parameterized in the form:

U =
1

Fπ
( σ + i π · τ), σ = Fπ

√
1− π2/F 2

π . (IV.1-9)

Substituting parametrization (IV.1-9) into the Lagrangian (IV.1-8) one obtains

L2 =
1

2
[∂µσ∂

µσ + ∂µπa∂
µπa] + σ Fπ m

2
π, σ2 +

3∑
a=1

πaπa = F 2
π . (IV.1-10)

In order to obtain larger parametrical freedom we extend this model by increasing

the number of the Goldstone bosons up to N . Therefore, the Lagrangian of the

model assumes the following form

L2 =
1

2
[∂µσ∂µσ + ∂µπ

a∂µπ
a] + σ Fπ m

2
π, σ2 +

N∑
a=1

πaπa = F 2
π . (IV.1-11)

We are going to use this Lagrangian as the EFT for pions. Note, that in the massless

limit Lagrangian (IV.1-11) coincides with the Lagrangian of the O(N + 1)/O(N)

model (II.2-5).

The operators OR,L must be constructed from the Lagrangian buildings blocks,

i.e. form the field U , derivatives and masses. The similar procedure have been done

for the FF operators (II.4-58) in chapter 2. But for operators of type (IV.1-7), the

standard Weinberg counting rules have to be extended. The point is that, although

the soft part of the hard processes does not depend on the hard momentum of the

QCD factorization, the operator still contains the information about it in the form

of the light-cone vector nµ.
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Let us obtain the chiral weight for the components of the vector n. The light-cone

decomposition of any four-vector V µ reads:

V µ = V + ñµ + V − nµ + V µ
⊥ , (IV.1-12)

where nµ and ñµ are the light-cone vectors n2 = ñ2 = 0 which are normalized as

n · ñ = 1. These two vectors define a two-dimensional plane. The perpendicular to

n and ñ plane is called a transverse plane. The vectors from the transverse plane

V µ
⊥ satisfy the condition n · V⊥ = ñ · V⊥ = 0. The physical observables are obviously

invariant under the rescaling of the vector n, i.e. under the transformation nµ → c nµ,

where c is an arbitrary non-zero constant. This invariance corresponds to the boost

invariance of the physical observables. It is convenient to fix the normalization of

the light-cone vector nµ by the condition n · p = 1, where p is one of the small

external momenta entering the soft part of the amplitude. Such condition implies

that nµ ∼ O(1/E) and ñµ ∼ O(E), where E is assumed to be a generic soft

momentum as in the usual power counting (I.1-8).

Summing up, we have to construct an effective hadronic operator in eqn. (IV.1-7)

using the chiral fields U(x) and their derivatives as building blocks with the following

counting rules:

n · ∂U(x) ∼ O(p0), ñ · ∂U(x) ∼ O(p2), ∂⊥U(x) ∼ O(p). (IV.1-13)

Operators (IV.1-6) are matched as follows

OL
fg(λ) =

iF 2
π

4
F(β, α) ∗

[
U

(
α+ β

2
λn

)
n·
↔
∂ U

†
(
α− β
2

λn

)]
fg

+ ...,(IV.1-14)

OR
fg(λ) =

iF 2
π

4
F(β, α) ∗

[
U †
(
α+ β

2
λn

)
n·
↔
∂ U

(
α− β
2

λn

)]
fg

+ ... ,

where the asterisk denotes the integral convolution with respect to β and α:

F(β, α) ∗O(β, α) ≡
∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα F(β, α)O(β, α). (IV.1-15)

Here F (β, α) is the generating function of the tower of the low-energy constants and
↔
∂ denotes

→
∂ −

←
∂ . The low-energy constants characterize the intrinsic structure of

the pion and they are not determined within EFT. The ellipsis in equations (IV.1-14)

stands for the operators that do not contribute to the one- and two-pion matrix ele-

ments of the operators OL,R, or which are of the higher orders in the chiral counting.

Note that if one will consider the chiral corrections, say, for three-pion distribution

amplitudes one need to add additional operators to eqn. (IV.1-14).



Hard processes and ChPT 83

At N = 3, the GPDs of the processes with iso-spin 0 and 1 are defined as 1:∫
dλ

2π
e−iP+ xλ

⟨
πb(p′) |tr [τ cOL+R(λ)]| πa(p)

⟩
= 4iε[abc]HI=1(x, ξ, t),(IV.1-16)

∫
dλ

2π
e−iP+ xλ

⟨
πb(p′) |tr [OL+R(λ)]| πa(p)

⟩
= 4δabHI=0(x, ξ, t). (IV.1-17)

Consequently, the corresponding PDFs are defined as∫
dλ

2π
e−ip+ xλ

⟨
πb(p) |tr [τ cOL+R(λ)]|πa(p)

⟩
= 4iε[abc]qI=1(x), (IV.1-18)∫

dλ

2π
e−ip+ xλ

⟨
πb(p) |tr [OL+R(λ)]|πa(p)

⟩
= 4δabqI=0(x) . (IV.1-19)

The generalization of the operators for the case of an arbitrary N can be done in

the following manner. The isovector operator becomes

O[ab](λ) = − F(β, α) ∗ P ab,cd
1 πc(x1λn) i

↔
∂+ πd(x2λn), (IV.1-20)

where P1 is the projector on the isospin-1 invariant subspace (III.3-55), and

x1 =
α+ β

2
, x2 =

α− β
2

.

Therefore, the PDF at arbitrary N is defined as∫
dλ

2π
e−ip+xλ

⟨
πd(p)

∣∣O[ab](λ)
∣∣ πc(p)⟩ = 8P cd,ba

1 qI=1(x), (IV.1-21)

and similar for the GPD. The isoscalar PDF (and similar for the GPD) at arbitrary

N is defined as ∫
dλ

2π
e−ip+xλ

⟨
πb(p) |O(λ)|πa(p)

⟩
= 2δab qI=0(x) , (IV.1-22)

where the operator is defined as:

O(λ) = −F(β, α) ∗
[
σ(x1λ)i

↔
∂+ σ(x2λ) + πa(x1λ)i

↔
∂+ π

a(x2λ)
]
. (IV.1-23)

Computing the matrix elements (IV.1-22) and (IV.1-21) at the tree level, one

1Our definition of iso-scalar GPD and PDF differ by factor 2 from the definition of [23],[27], i.e.
Q(x) = 2qI=0(x). We use such definition for the universality of notations. The physical meaning
of distributions is fixed by the expressions (IV.1-27)-(IV.1-28)
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obtains the following expressions for the GPDs at the leading order of ChPT

o

HI (x, ξ) =

∫
[dαdβ] F I(β, α) [δ(x− ξα− β)− (1− I) ξδ(x− ξ(α+ β))] .

(IV.1-24)

Here we introduce the notations: F 1,0(α, β) = 1
2
(F(β, α) ± F(−β, α)); the measure

[dαdβ] stands for the integration over the rombus |α|+ |β| ≤ 1, (IV.1-15).

In the first term of eqn. (IV.1-24) one recognizes the double distribution (DD)

representation for the GPD [67],[68]. The second term of eqn. (IV.1-24), which

contributes only to the singlet GPD corresponds to the GPD D-term [69]. Note

that the D-term for the pion GPD is also fixed in terms of DD due to the soft pion

theorem [70]

o

H
I=0(x, ξ = ±1) = 0.

The generating function F (β, α) for the low-energy chiral constants at the leading

order of ChPT coincides with the DD for the pion in the chiral limit and at zero

momentum transfer. This implies that the function F (β, α) is related to the quark

distributions of the pion in the chiral limit (mπ = 0):∫ 1−|β|

−1+|β|
dα F I=0(β, α) =

1

2

[
θ(β)

o
q (β)− θ(−β)

o
q̄ (−β)

]
= qI=0(x), (IV.1-25)∫ 1−|β|

−1+|β|
dα F I=1(β, α) = θ(β)

o
q (β) + θ(−β)

o
q̄ (−β) = qI=1(x). (IV.1-26)

The first Mellin moment of these distributions is related to the forward matrix ele-

ments of the energy momentum tensor and vector current respectively. This gives:∫
[dαdβ] F I=0(β, α)β =

1

2
MQ

2 , (IV.1-27)∫
[dαdβ] F I=1(β, α) = 1 , (IV.1-28)

where we have introduced the notation for the fraction of the pion momentum carried

by quarks and antiquarks MQ
2 =

∫ 1

0
dx x (q(x) + q̄(x)). Using these equations and

eqn. (IV.1-24) one can obtain the first moment for GPD HI=1,0:∫ 1

−1
dx x

o

H
I=0(x, ξ) =

1− ξ2

2
MQ

2∫ 1

−1
dx

o

H
I=1(x, ξ) = 1 . (IV.1-29)

The expressions with defined C-parity are convenient for the EFT calculation,

but for practical applications one needs the expressions for distributions of particular
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flavor in particular pion. It is straightforward to show that

Hu
++ =

∫
dλ

2π
e−ixP+λ⟨π+(p′)|ū

(
λn

2

)
(nγ)u

(
−λn

2

)
|π+(p)⟩ = HI=0 +HI=1,

(IV.1-30)

Hd
++ =

∫
dλ

2π
e−ixP+λ⟨π+(p′)|d̄

(
λn

2

)
(nγ)d

(
−λn

2

)
|π+(p)⟩ = HI=0 −HI=1,

(IV.1-31)

where we omit the arguments of GPD for compactness.

The interpretation of the generating functions F I(β, α) as DD’s assumes that

these functions depend on the factorization scale µ. The functional dependence from

this parameter is described by the evolution equations [72]. For the sake of simplicity

we do not write the argument µ explicitly but imply it.

IV.2 Singular contribution to pion distribution func-

tions

The parton distribution in the chiral limit is given by exp. (IV.1-24). This expression

corresponds to the tree order diagram shown in fig.IV-2.a, where by the crossed vertex

we denote the non-local operator (IV.1-20), (IV.1-23). The leading chiral correction

to the parton distribution within the framework of ChPT was considered in [62],[71].

The correction is given by the two diagrams shown in fig.IV-2.b-c. The non-analytic

part of the result for the isovector PDF reads

q(x) =
o
q (x) + aχ ln

(
1

aχ

)(
o
q (x)− δ(x)

)
, (IV.2-32)

where aχ = m2
π

(4πFπ)2
.

Exp. (IV.2-32) contains an explicit singularity, namely the δ-function. As we

will show later, the higher order chiral corrections contain higher order singularities

in form of derivatives of δ-function. This may indicate that in the area of small-x

where the δ-functions became large the usual chiral expansion is not valid anymore.

The source of the δ-function in exp. (IV.2-32) is the loop diagram shown in

fig.IV-2.c. Let us consider this diagram in details. The Feynman rule for the non-

local 2-pion vertex is the following

VI = iT IabF
I(β, α)

[
k+δ(xP+ − βk+ − α

∆+

2
)− (1− I)∆+

2
δ(xP+ − (β + α)

∆+

2
)
]
,

where T 0
ab = δab and T 1

ab =
1
2
P

[cd],ab
1 . The loop-integral of the diagram in fig. IV-2.c
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Figure IV-2: a. The tree order of GPD. b,c. The leading chiral corrections to GPD.

has the following form

Diag.c ∼ aχ
m2
π

F (β, α) ∗
∫
dk
k+δ(xP+ − βk+) ·Denom.

(k2 −m2)2
, (IV.2-33)

where Denom. is a linear combination of three momentum structures (kP ), k2 and

m2. Integral (IV.2-33) contains one open Lorentz index, which is contracted with nµ.

The only vector which is acceptable for the contraction with nµ in PDF kinematics

is the momentum Pµ. Therefore, the term proportional to k2 and m2 in Denom.

produces zero. Expanding the δ-function at k+ = 0 in a formal series

δ(k+β − P+x) =
∞∑
n=0

βn

n!

(
k+
P+

)n
δ(n)(x), (IV.2-34)

we conclude that only the term with n = 0 survives, since the Denom. contains only

one momentum Pµ. The last remainder loop-integral can be taken in an usual way,

with the result (IV.2-32). Note, that for the isoscalar PDF the diagram c. produces

zero, due to the convolutions of isospin indices.

The presence of the singular term reorganizes the usual chiral expansion at small

values of the momentum fractions x ∼ aχ. The kinematical region of values x ∼ aχ

is equivalent to the large light-cone distance λ ∼ 1/aχ. Therefore, the singular term,

which is formally of the next-to-leading order, actually is of the same order as the

leading term aχδ(x) ∼ O(a0χ).
The higher orders of ChPT possess even more singular structures – the derivatives

of the δ-function, δ(n)(x). Let us consider the diagram in fig. IV-2.c with a four-

vertex from the L2n part of the ChPT Lagrangian. The vertex contains ∼ (kp)n term

in the Denom. of the loop-integral (IV.2-33). Its loop-convolution with the non-local

vertex can be easily calculated with the help of the formal expansion (IV.2-34). It

reads ∫
dDk

(2π)D
k+δ(βk+ − xP+)(2kP )

n

(k2 −m2)2
(IV.2-35)

=
i

ε(4π)2

(
µ2

m2

)ε

δ(n−1)(x)βn−1
(−1)n−1

(n− 1)!

(
m2
)n

+O(δn−2, ϵ0),
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where under O(δn−2) we understand less singular and regular contributions. There-

fore, the singular contributions appear at all orders of the chiral expansion.

In the GPD kinematics the presence of a non-zero parameter ξ smears δ(n−1)(x).

As a result, one has the θ(x < |ξ|)/ξn term. These contributions also break down

the usual hierarchy of the chiral expansion, since such terms are of the order ∼ a0χ
in the regime ξ ∼ aχ. Moreover, the amplitude (IV.1-1) calculated on the singular

terms contains the unphysical pole at ξ = 0.

In the GPD kinematics, the loop integral contains two momenta which can carry

the ”+” indices, ∆µ and Pµ. However, the highest singular contribution comes

from the highest power of momentum Pµ only. Because any momentum ∆µ in the

denominator of the loop integral decreases the singularity, according to the relation

∆+ = 2ξP+,. Therefore, the singular term is produced by ∼ (kp)n item of the

denominator, just as in the PDF case. The basic loop integral in the GPD kinematics

is ∫
dk

k+δ(k+β + ∆+

2
α− xp+)(2kp)n

[(k −∆/2)2 −m2][(k +∆/2)2 −m2]
= (IV.2-36)

i

ε

(−1)n−1

2n!

θ(|x| < |ξ|)
ξn

∫ 1

−1
dη

[
∂nη ηδ(α+ ηβ − x/ξ)

][
R(η, t)

]−n
(

µ2

R(η, t)

)ε

+O(ξ−n+1, ϵ0),

with

R(η, t) = m2 − t

4
(1− η2).

The loop-integral of (IV.2-35)-(IV.2-36) type can be also produced in multi-loop

diagram. Therefore, we have the double expansion over singular terms and over the

loops. The loop diagrams produce different powers of logarithms, which are dominate

in our kinematic region.

The hierarchy of the expansion is the following. The most singular terms at any

order have the same status as the leading regular contribution. Among the singu-

lar terms of the same order, there are terms with different powers of logarithms. 2

Therefore, one has to resum the leading singular contributions at the LLog approx-

imation in order to obtain the selfconsistent leading order result. In the PDF case

the singular terms have the form of derivatives of delta-function. In the GPD case

the singular terms have the form of inverse powers of ξ. The resulting expansion for

2This situation is similar to the perturbative expansion in the usual renormalizable theory, where
the coupling constant g ∼ 1

lnΛ2 . Therefore, the perturbative series goes only over the inverse powers
of logarithms.
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PDF has the form

q0(x) = q0,reg(x) +
∑

n≥2, even

a0n

[
aχ ln

(
1

aχ

)]n
δ(n−1)(x) +O

(
ln−1

(
1

aχ

)
,
1

aχ

)
,

(IV.2-37)

q1(x) = q1,reg(x) +
∑

n≥1, odd

a1n

[
aχ ln

(
1

aχ

)]n
δ(n−1)(x) +O

(
ln−1

(
1

aχ

)
,
1

aχ

)
.

(IV.2-38)

The evenness(oddness) of the derivatives in the expansion follows from the even-

ness(oddness) of PDF itself, i.e. qI(−x) = (−1)I+1qI(x). In Ref. [23] the coefficients

D1,2,3 were computed performing the direct three-loop calculations with the result:

a11 = −1, a02 = −
5

6
⟨x⟩, a13 = −

25

108
⟨x2⟩ , (IV.2-39)

where

⟨xn⟩ = F I(β, α) ∗ βn =

∫ 1

−1
dxxn

o
q (x) , (IV.2-40)

the n-th moment of the corresponded PDF.

In the contrast to the previous chapters, in the present chapter we deal with

the massive EFT. Therefore, there is no subleading terms in logarithm diagrams,

i.e. every diagram contains LLog contribution. However, there is a limited class of

diagrams, which can contain the leading singular term. Also, the necessity to extract

only the leading singular term from the loop-integrals simplifies the task crucially,

namely, the masses in the diagrams can be partly put to zero. Let us discuss these

features in details.

The singular contribution is the consequence of the loop convolution of the non-

local and local vertices. The power of the singularity is proportional to the number

of the vectors Pµ in the denominator, as we have seen in the basic loop integrals

(IV.2-35) and (IV.2-36). The diagrams, that are irreducible over the operator vertex

(fig.4.3a), have no leading singular contribution, since the clip part (without external

legs) does not contain the momentum Pµ. The diagrams with an operator vertex

of a higher chiral order have an additional power of the moment kµ in the integral.

Therefore, they are also sub-leading in the singular part. The same situation happens

with diagrams with many (more then two) fields in the operator vertex, fig.4.3b.

The only topology of graphs that can produce the leading singular term is shown

in fig.IV-3.c. The ππ-scattering subgraph of the diagram in fig.IV-3.c can be taken

in the massless limit, because any extra power of m2 decreases the power of the

singularity by unity. Therefore, one can use the technique of the previous chapters

in order to obtain the LLog behavior the ππ-scattering subgraph.

The consideration of the leading singular term is similar to the consideration of
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Figure IV-3: Different diagram topologies: a. and b. does not contribute to the
leading singular terms.

the FF LLog behavior in the pure massless theory. The main difference is that one

does not not have to consider the renormalization of the non-local vertex, since it

would decrease the power of the singular term. Schematically, the graph in fig.IV-3.c

has the following structure:

G = V(x) ⋆
[
((n− 1)-loop-subgraph) + ...+ g

(4)
nCVnC

]
massless

=
n∑
k=0

lnn(µ2)Rn(x, p,∆,m
2),

where VnC is the Feynman expression for the n-th order of the four-pion vertex in

the EFT (IV.1-11), and the star denotes the loop-convolution. The operator vertex

V is of the lowest chiral order, thus, it has no anomalous dimension. Recalling

eqn. (I.4-23), property (II.2-24) and definition (II.3-34) one can perform the chain

of transformations:

(
µ2 d

dµ2

)n
G = n!Rn = µ2 d

dµ2
Ĥn−1

(
V(x) ⋆

[
...+

∑
C

gnCVnC

]
massless

)

=
∑
C

(n− 1)!

F
2(n−1)
π

ωnCµ
2 d

dµ2

(
V(x) ⋆ V massless

nC

)
, (IV.2-41)

where ωnC is defined by eqn. (II.3-34) and satisfy recursive equation (II.3-36).

In the massless limit the theory (IV.1-11) coincides with the earlier considered

O(N + 1)/O(N) σ-model (II.2-5). Thus, the expression (II.3-42) can be taken for

the VnC . The kernel for eqn. (III.2-37) for this theory is given by exp. (II.3-52).

In order to extract the leading singular contribution one has to take the highest

power of (kp) from the vertex VnC (II.3-42), contract the indices and calculate the

loop convolution with the help of expressions (IV.2-35) and (IV.2-36). The results

of the calculation in the PDF and GPD kinematics are presented further.
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Table IV-1: First few values of coefficients near the leading singular terms aI=0
n (table

a) and aI=1
n (table b) at arbitrary N .

(a)

n 2 4 6

aI=0
n

5
6
− 5N

6
−7N3

480
+ 133N2

3240
− 791N

12960
+ 14

405

− N5

8960
+ 361N4

708750
− 9441001N3

8164800000

+ 36581227N2

24494400000
− 30246239N

24494400000

+ 2449121
4898880000

(b)
n 1 3 5

aI=1
n −1 −N2

24
+ 37N

432
− 49

432
− N4

1920
+ 20753N3

10368000
− 363091N2

93312000
+ 17849N

4665600
− 101

38880

Singular part of pion PDF With the help of eqn. (IV.2-41) and loop-integral

(IV.2-35) we obtain the expression for the coefficients aIn (IV.2-37)-(IV.2-38):

aI=0
n = =

−1
n!
CI=0
n =

−1
n!

[ n∑
C=0

ωnC +
N

2

(2n)!

n!n!
ωnn

]
, n = even, (IV.2-42)

aI=1
n = =

−1
n!
CI=1
n =

−1
n!

n∑
C=0

ωnC , n = odd. (IV.2-43)

The contribution of the singular terms to the PDF denoted by δqI(x) reads

δqI(x) =
∞∑
n=1

−CI
n

n!
δ(n−1)(x)⟨xn−1⟩

(
aχ ln

(
1

aχ

))n
, (IV.2-44)

where the moments ⟨xn⟩ are defined by exp. (IV.2-40) and have to be taken over

the PDF with the corresponding isospin.

The coefficients CI
n are proportional to the LLog coefficient of s = 0 amplitude

with the isospin I:

CI=0
n =

1

2

n∑
l=0

ω0
nJΩ

Jl
n =

(2n)!

2(n!)2
ω0
nn, n = even, (IV.2-45)

CI=1
n =

1

2

n∑
l=0

ω1
nJΩ

Jl
n =

(2n)!

2(n!)2
ω1
nn, n = odd. (IV.2-46)

where for the second equality exp. (B.1-7) was used. The first few values of aIn are

presented in tables IV.1 (a-b).

In order to resum the series of singular terms (IV.2-44) we introduce the Mellin

image for the coefficients cIn in the following way:

CI
n

An−1n
=

(2n)!

(n!)2An−1
ωInn
2n

=

∫ ∞
0

f I(z)zn−1 dz, (IV.2-47)
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Table IV-2: First few numerical values of coefficients near the leading singular terms
aI=0,1
n at N = 3.

n 1 3 5 7 9 11

aI=0
n+1 −1.67 −0.17 −6.85× 10−3 −1.47× 10−4 −2.01× 10−6 −1.90× 10−8

aI=1
n −1. −0.23 −0.014 −4.22× 10−4 −7.37× 10−6 −8.54× 10−8

13 15 17 19

−1.32× 10−10 −7.03× 10−13 −2.95× 10−15 −1.01× 10−17

−7.05× 10−10 −4.35×−12 −2.08× 10−14 −7.94× 10−17

where A is the number which specifies the asymptotic behavior of ωn, see (IV.2-51).

Representing the n-th derivative of the delta-function by the expression:

δ(n)(x) =

∫
dλ

2π
(iλ)neiλx, (IV.2-48)

changing the order of summation and integration we rewrite the sum (IV.2-44) in

the form

δqI(x) = − ϵ

A

∫ 1

−1
dβ

∫ ∞
0

dz

∫
dλ

2π

o
q
I

(β)f I(z)
∞∑
n=1

1 + (−1)I+n

2

(iλϵzβ)n−1

(n− 1)!
eiλx,

where

ϵ = A aχ ln

(
1

aχ

)
.

Computing the sum and integrating over λ one obtains

δqI(x) = − ϵ

2A

∫ 1

−1
dβ

∫ ∞
0

dz
o
q
I

(β)f I(z)
(
δ(x+ ϵzβ)− (−1)Iδ(x− ϵzβ)

)
.

(IV.2-49)

Using the symmetry properties of the PDF, i.e. qI(−x) = (−1)1−Iq(x) one rewrites

exp. (IV.2-49) in the form of Mellin convolution:

δqI(x) =
(−1)I (sign(x))I−1

A

[
o
q
I

⊗f I
](
|x|
ϵ

)
(IV.2-50)

=
(−1)I (sign(x))I−1

A

∫ 1

0

dβ

β

o
q
I

(β)f I
(
|x|
ϵβ

)
.

The function δqI is a nonsingular on the range −1 < x < 1 function, if the function

f(z) ∼ z0 at z = 0. Therefore, the resummation solves the problem of the singular

contributions

The function f(z) (IV.2-47) can not be found exactly, since the exact analytical

solution of eqn. (II.3-36) is not found yet. Instead of it we are going to use the
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approximate fit of the solution, that is based on the asymptotic behavior of the

solution and on the large-N expansion.

We assume that the asymptotic behavior of the ωn at n→∞ is power-like

ωn0 ∼
n∑
l=0

ωnl ∼ An−1, (IV.2-51)

where A is a number. Such behavior is natural for the large class of the recursive

equations, see the more detailed discursion in appendix C.2. Also such behavior is

supported by the large-N expansion (II.3-55) and by the numerical investigations.

The higher partial waves coefficients have a similar or weaker behavior. Particulary,

the crossing symmetry implies that

ωnn ∼
n!n!

(2n)!

ωn0
n+ 1

∼ An−1

n+ 1
,

which is also supported by the Large-N expansion (C.1-7). Therefore, we suggest

the following ansatz with two free parameters for the coefficients aIn

CI
n = (AI)n−1

(
cI0 +

cI1
n+ 1

)
, (IV.2-52)

where the parameter cI0 fixes the correct lowest n value.

The numerical calculation of the first 150 coefficients aIn at N = 3 gives the

following numbers for the parameters:

A0 = 1.14861, , c00 = 0.75949, c01 = 2.07464 , (IV.2-53)

A1 = 1.14861, , c10 = 0.75942, c11 = 0.48116 . (IV.2-54)

The comparison of the fit with the exact solution is shown in fig.IV-4. One can

see that for n > 40 the deviation form the exact solution is less then 0.2%. The

maximum deviation from the exact solution is reached 15% at points n ∼ 4.

The parameters A0 and A1 coincide, although they are estimated independently.

This indicates that our assumption on the asymptotic behavior (IV.2-51) is correct.

Using the fit (IV.2-52) and exp. (IV.2-47), one obtains the approximate function

f(z):

fapp(z) = θ(z < 1)
(
cI0 + cI1 − cI1z

)
. (IV.2-55)

The leading singular correction to the PDF within this approximation is

δqIapp =
θ(|x| < ϵ)(−1)I (sign(x))I−1

A

∫ 1

|x|/ϵ

dβ

β

o
q
I

(β)

(
cI0 + cI1 − cI1

|x|
ϵβ

)
.(IV.2-56)
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Figure IV-4: The comparison of the exact calculated singular terms coefficient with
the fit (IV.2-52).

In the large-N limit the values of the fit parameters (IV.2-53)-(IV.2-54) are fol-

lowing:

a0 = a1 =
N

2
, c00 = c10 = 1, c01 = 2, c11 = 0. (IV.2-57)

Substituting these values of parameters to exp. (IV.2-56) one obtains the result of

ref. [27].

The domain of argument for the function f(z) is most likely restricted to the area

0 < z < 1, because the Mellin moment of f(z) is not an increasing function of n, i.e.
Cn

An−1 ∼ 1 at n → ∞. Therefore, the domain of variable x is restricted to the area

|x| < ϵ ∼ 0.066, e.g. see exp. (IV.2-56).

The popular small-x behavior of the PDF is given by the Regge-like ansatz

o
q
I

(x) ∼ 1

xα±
, (IV.2-58)

where α± = α±(0) is the intercept for the Regge trajectory, α− ≈ 0.5, α+ ≈ 1.1. The

subscript ± stays for the C-parity of the Regge trajectory. The α+(−) corresponds

to the I = 0(1) PDF. Substituting the Regge ansatz to exp. (IV.2-50) and using the

properties of the Mellin convolutions one obtains that at small-x the PDF singular

part behaves as

δqI(x) = (−1)I (sign(x))I−1
(
aχ ln(1/aχ)

x

)α± CI
α±

α±

(
1 +O

(x
ϵ

))
, (IV.2-59)
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where CI
α is the analytical continuation of the coefficients (IV.2-42)-(IV.2-43) to the

non-integer values of n, which can be done with the help of exp. (IV.2-52). Therefore,

the leading singular correction does not change the small-x asymptotic behavior of

the PDF.

Interestingly, the leading power of chiral coupling is determined by the intercept

of the Regge trajectory α. This shows clearly the importance of the resummation

of the singular chiral corrections for the derivation of the leading chiral counting of

PDF. The naive chiral counting, i.e. without taking into account the second scale

related to the light-cone distance, suggests that the leading chiral correction to the

PDF is ∼ aχ ln(1/aχ). However, it is not correct as it is demonstrated by exp.

(IV.2-59).

Singular part of pionic GPD The consideration of the singular terms in the

off-forward kinematic is more involved. Using eqn. (IV.2-41) and the loop-integral

(IV.2-36) one obtains the following expression for the leading singular part of GPD:

δHI(x, ξ, t) = (IV.2-60)

−1
2

∑
n

1

ξn
CI
n

∫ 1

−1
dη

(R ln 1/R )n

n n!
∂nη ηF

I(α, β) ∗ δ
(
βη + α− x

ξ

)
,

where

R =
m2
π − t(1− η2)/4

(4πFπ)
2 ,

and coefficients CI
n are given by exp. (IV.2-42)-(IV.2-43).

In the forward limit ξ, t → 0 exp. (IV.2-60) coincides with exp. (IV.2-44),

because

lim
ξ→0

θ(|x| < ξ)

ξn
∂nη

[
ηδ

(
βη + α− x

ξ

)]
= nδ(n−1)(x)βn−1, (IV.2-61)

and R|t=0 = aχ.

The summation in exp. (IV.2-60) can be done in the similar way as for the PDF.

Using the representations (IV.2-47)-(IV.2-48) one obtains

δHI(x, ξ, t) =
−1
4A

∫ 1

−1
dηF I(α, β) ∗

∫ ∞
0

dzf I(z)

∫
dλ

2π
eiλ(βη+α−

x
ξ )

×
[(

η

z
+
ϵt
ξ

)
eiλ

βϵtz
ξ + (−1)I

(
η

z
− ϵt
ξ

)
e−iλ

βϵtz
ξ − (1 + (−1)I)η

z

]
,

where ϵt = AR ln
(
1
R

)
. Integrating over λ, and rescaling the variable z one obtains
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the expression similar to exp. (IV.2-50):

δHI(x, ξ, t) =
−1
2A

∫ 1

−1
dη

∫ ∞
0

dz

z
f I(

z

ϵt
) hI(x, ξ, z, η), (IV.2-62)

where f I is defined in (IV.2-47) and

hI(x, ξ, z, η) =
1

2
F I(β, α) ∗

(
D(ηξ + z) + (−1)ID(ηξ − z)− (1 + (−1)I)D(ηξ)

)
,

D(y) = yδ(βy + ξα− x). (IV.2-63)

Depending on the domain to which the parameters ξ, x and y belong the convolution

F ∗D(y) is represented by the GPD or by the distribution amplitude (DA):

o

H
I

(x, ξ) = F I ∗
(
δ(x− ξα− β)− (1 + (−1)I)ξδ(x− ξα− ξβ)

)
,

o

Φ
I

(x, ξ) = F I ∗
(
ξδ(x− α− ξβ)− (1 + (−1)I)δ(x− α− β)

)
.

Therefore, the function hI (IV.2-63) can be rewriten in the terms of the physical

quantities

hI(x, ξ, z, η) = θ(x < ηξ + z)θ(ξ < ηξ + z)
o

H
I
(

x

ηξ + z
,

ξ

ηξ + z

)
(IV.2-64)

+θ(x < ξ)θ(ηξ + z < ξ)
o

Φ
I
(
x

ξ
,
ηξ + z

ξ

)
− δI0θ(x < ξ)

o

Φ
I
(
x

ξ
, η

)
,

where we have used the relation F I(β, α) = (−1)I+1F I(−β, α).
The character feature of the singular term resummation is that although every

term of the series (IV.2-60) is restricted to the area (x < ξ), the resulting expression

(IV.2-64) covers a wider region. The singular terms influence on both, the DGLAP

and the ERBL, regions of GPD.

The PDF with the transverse momentum dependence q(x,∆2) takes a special

place in particle physics. This object is much simpler than the GPD and can be

obtained from the later taking the limit ξ → 0, t = −∆2.

The limit ξ → 0 can be taken both using exp. (IV.2-61) before the summation

and directly in exp. (IV.2-64) with the same result:

δqI(x,∆2) = δHI(x, 0,−∆2) =
−1
2A

∫ 1

−1
dη

∫ ∞
0

dβ

β

o
q
I

(β)f I
(
x

ϵtβ

)
. (IV.2-65)

It is easy to see that at ∆2 = 0 exp. (IV.2-65) coincides with exp. (IV.2-59).

Let us also consider the intersting limit mπ → 0. Kinematically this case corre-

sponds to a wide range of the momentum transfer m2
π ≪ t ≪ (4πFπ)

2. Using the
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properties of the Mellin transformation and the integral∫ 1

−1
dη

(
1− η2

4

)n
= 2

n!n!

(2n+ 1)!
,

we rewrite exp. (IV.2-65) as

δqIm=0(x,∆
2) =

−2
A

∫ ∞
0

dβ

β

o
q
I

(β)gI
(

x

ϵ∆β

)
, (IV.2-66)

where

ϵ∆ = 4A
∆2

(4πF )2
ln

(
1
/ ∆2

(4πF )2

)
,

∫ ∞
0

gI(z)zn−1 dz =

√
π

(4A)n−1
Γ(n+ 1)

Γ
(
n+ 3

2

)CI
n

n
=

4

n(2n+ 1)

ωInn
An−1

. (IV.2-67)

Taking the ansatz (IV.2-52) with the values of parameters in the Large-N approxi-

mation (IV.2-57) one obtains the result of [27].

The transverse size of the pion cloud The Fourier transformation of the PDF

with the transverse momentum dependence gives the impact parameter distribution

of partons [73]:

q(x, b2) =

∫
d2∆

(2π)2
q(x,∆2)ei(b·∆). (IV.2-68)

The impact parameter distribution q(x, b2) gives the probability density to find a

parton with a momentum fraction x at distance b2 from the hadron centrum of

mass.

The large-b behavior of q(x, b2) is related to the small-∆ behavior of q(x,∆). The

later is given by the chiral expansion and its leading term is given by all order re-

summation of the singular terms (IV.2-65). Note, that the lowest order contribution
o
q (x) does not depend on ∆, therefore, it gives the trivial b dependence.

The operation of summation over singular terms and the Fourier transformation

do not commute. The reason of the non-commutation is the following. The sum

(IV.2-60) is defined for the low-∆2 area, thus, for R ln(1/R) > 0. The integration

over ∆ extends the area R ln(1/R) < 0 also. The analytic continuation of the

sum (IV.2-60) to this area contains the addition term, namely, the residue of the

point n = ∞, which is significant at R ln(1/R) = 0. The accounting of this term is

irrelevant for the chiral expansion, because it corresponds to the ∆2 ∼ (4πF )2 region.

Therefore, we should take the Fourier transformation and the large-b behavior before

the operation of the summation.

The leading order chiral term of q(x,∆2) can be obtained from the complete
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expression for GPD (IV.2-60) with the help of exp. (IV.2-61). It reads

δqI(x,∆2) = δHI(x, 0, t = −∆2
⊥) =

−1
2

∞∑
n=1

CI
n

n!

∫ 1

−1
dη

[
R ln

(
1

R

)]n
⟨xn−1⟩δ(n−1)(x).

(IV.2-69)

In order to perform the Fourier transformation we rewrite the logarithms as a differ-

entiation with respect to power:(
R ln

(
1

R

))n
=

(
d

dν

)n
Rn−ν

∣∣∣
ν=0

.

The Fourier transformation can be done in the usual way(
1− η2

2

)n−ν ∫
d2∆

(2π)2
eib∆

[
4m2

1− η2
+∆2

]n−ν
= (IV.2-70)

2ν−n

πΓ(−n+ ν)

(1− η2)n−ν

(b2)1+n−ν
[
α1+n−νK1+n−ν (α)

]
,

where α =
√

4m2b2

1−η2 , Kn(x) is the modified Bessel function of the second order and

we have put (4πF )2 = 1 for simplicity. Here the integral (IV.2-70) is UV diver-

gent. Therefore, we have calculated it with the regularization factor e−ϵ∆ with the

subsequent limit ϵ→ +0.

The chiral counting rules assume that m2
π ∼ ∆2 ∼ b−2, and thus, m2b2 ∼ 1.

Therefore, the differentiation of the part in the square brackets (IV.2-70) is of the

next-to-leading order,

d

dν

[
α1+n−νK1+n−ν (α)

]
∼ ln(m2b2) = O

(
1

ln(b2)

)
.

We obtain(
d

dν

)n
1

πb2
1

Γ(−n+ ν)

(
1− η2

2b2

)n−ν [
α1+n−νK1+n−ν (α)

] ∣∣∣
ν=0

(IV.2-71)

=
(−1)n n n!

πb2

(
1− η2

2b2

)n
lnn−1

(
b2
) [
α1+nK1+n (α)

](
1 +O

(
1

ln(b2)

))
.

Finally, we obtain that the asymptotic behavior of q(x,∆2) is given by the sum

δqI(x, b2) =
(−1)I

π(4πF )2b4
(IV.2-72)

∞∑
n=1

∫ 1

−1

1− η2

4
dη nCI

n ϵ
n−1
η ⟨xn−1⟩δ(n−1)(x)

[
α1+nK1+n (α)

](
1 +O

(
1

ln(b2)

))
,

where ϵη = 1−η2
2(4πF )2b2

ln ((4πF )2b2) > 0. The summation can be performed using the
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standard methods. The result is the following

δqI(x, b2) =
1

πAb2 ln ((4πF )2b2)
(IV.2-73)

∫ 1

−1
dη

∫ 1

0

dz

z
[qI ⊗ f̃ I ](z)

√
x
ϵbz

+m2b2

1− η2
K1

2

√
x
ϵbz

+m2b2

1− η2

(1 +O( 1

ln(b2)

))
,

where

ϵb =
A

(4πF )2b2
ln
(
(4πF )2b2

)
,

nCI
n

An−1
=

∫ ∞
0

f̃ I(z)zn−1 dz,

and the operation ⊗ is the Mellin convolution, see exp. (IV.2-50). Integrating over

η we rewrite exp. (IV.2-73) in the form

δq(x, b2) =
1

2πAb2 ln ((4πF )2b2)
(IV.2-74)∫ 1

0

dz

z
[qI ⊗ f̃ I ](z)

[
yK0 (2

√
y)⊗

√
1− y+

]( x

ϵbz
+m2b2

)
·
(
1 +O

(
1

ln(b2)

))
,

where √
1− y+ =

√
1− yθ(|y| < 1).

Exp. (IV.2-74) is cumbersome. In order to concentrate on the effects of the

summation, let us put the mass of pion to zero. In this case the PDF impact

parameter dependence has a simple form

δqI(x, b2) =
1

πAb2 ln (b2(4πF )2)
(IV.2-75)∫ 1

0

dz

z
2

(
x

ϵ4z

) ν
2

Kν

(
2

√
x

ϵ4z

)
[qI ⊗ g̃Iν ](z)

(
1 +O

(
1

ln(b2)

))
,

where ϵ4 = 4ϵb, ν is an arbitrary number ν > 1 and

nCI
n

An−1
n!n!

(2n+ 1)!

Γ(n+ 1)

Γ(n+ ν)
=

∫ ∞
0

g̃Iν(z)z
n−1 dz. (IV.2-76)

Exp. (IV.2-75) is in fact independent of the parameter ν. The parameter ν is

introduced for the purpose of improving the properties of the function g̃Iν (IV.2-76).

The integration range of z in exp. (IV.2-75) is naturally separated into two parts,

1 > z > x
ϵ4
and x

ϵ4
> z > 0. In the area x

ϵ4
> z > 0 the Bessel function is exponentially

small. Therefore, the main part of the integral (IV.2-75) is concentrated in the area

1 > z > x
ϵ4
. From this follows that the large-b behavior is exponentially suppressed

in the region of x > ϵ4. That is very natural, because the partons with the high
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momentum fraction x forms the center of mass of the hadron.

In the low-x region a PDF can be approximated by the Regge-like expression

(IV.2-58). The resulting expression is

δqI(x, b2) =
CI
α±

xα±

4α±

π

Γ4(α± + 1)

Γ(2α± + 2)

lnα±−1 (b2(4πF )2)

b2 (b2(4πF )2)α±

(
1 +O

(x
ϵ

))
. (IV.2-77)

We observe a very interesting phenomenon – the distributions of partons in the trans-

verse plane at large impact parameter b depend on the intercept of the corresponding

Regge trajectory. This new phenomenon is revealed due to the all order resummation

of singular terms.

The large-b behavior can be obtained by the Fourier transformation of the vector

and tensor FF, for I = 1 and I = 0 respectively. Such consideration gives the

following asymptotic behavior

qI=0(x, b2) ∼ ln(b2)

b6
δ′(x), qI=1(x, b2) ∼ 1

b4
δ(x). (IV.2-78)

The intercepts of the Regge trajectories are ω− ≈ 0.5 and ω+ ≈ 1.1. We see that

the distribution of partons at large-b (IV.2-77) drops slower than the naive results

(IV.2-78) of the finite order. This comparison clearly shows the importance of the

summation of the singular terms.

Note, that eqn. (IV.2-77) can not be obtained directly from exp. (IV.2-59),

because of the non-commutativity of the summation over singular terms and Fourier

transformation. The root cut ∆2 > (4πF )2 of exp. (IV.2-59) produces a contribution

with the higher power of logarithm. This contribution, although it has stronger

asymptotic behavior, is irrelevant, because the summation of the series (IV.2-69) is

performed in the ∆≪ (4πF )2 region. This mistake has been done in [27].

The behavior of the PDF at x≪ ϵ can be easily obtained for the massive case as

well. It reads

δqI(x, b2) =
CI
α±

xα±

4α±

π

Γ4(α± + 1)

Γ(2α± + 2)

lnα±−1 (b2(4πF )2)

b2 (b2(4πF )2)α± (IV.2-79)

1F2

(
−1

2
− α±;−α±,−α±;m2b2

)(
1 +O

(x
ϵ

))
.

At the large b and fixed m the hypergeometric function behaves as 1F2(..) ∼ e−2mb.

The function g̃I in exp. (IV.2-75) for practical applications can be approximated

with the help of the approximate solution (IV.2-52). Using the arbitrariness of
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parameter ν one obtains

δqIapp(x, b
2) =

1

πA

1

b2 ln (b2(4πF )2)

∫ 1

0

dz

z
[q ⊗ P ] (z) (IV.2-80)(

cI0

(
x

ϵbz

)
K2

(
2

√
x

ϵbz

)
+ cI1

(
x

ϵbz

) 1
2

K1

(
2

√
x

ϵbz

))
,

where

P (z) =
z√
1− z

− 2z ln

(
1 +
√
1− z√
z

)
,

and the parameters A and cI0,1 are defined in (IV.2-53)-(IV.2-54).

Singular terms resummation for u-quark distribution In the end of the

chapter, let us discuss the spatial image of u-quark distribution in π+. Although,

the operator of Hu
++ has a simple relation with HI operators, see eqn. (IV.1-30). The

resumed results have no such simple relations, because during the above resummation

we had assumed the fixed parity properties and summed up even or odd terms only.

Here, we do not present the detailed calculation for u-quark distribution, since it is

very similar to above, but only the results.

The PDF with the transverse momentum dependence has the following form

δqu(x,∆2) = δHu
++(x, 0,−∆2

⊥) =
−1
2

∞∑
n=1

Cu
n

n!

∫ 1

−1
dη

[
R ln

(
1

R

)]n
⟨xn−1⟩δ(n−1)(x).

,(IV.2-81)

where the summation goes over all n. The coefficients Cu
n are

Cu
n =

n∑
l=0

ωnl +
N

2
ωnn

(2n)!

n!n!
. (IV.2-82)

The coefficients Cu
n contain both n-even and n-odd parts. These parts have to

be considered separately, because their analytical properties differ from each other.

Let us introduce the following notation

Cu
n

∣∣∣
without (−1)n terms

An−1n
=

∫ ∞
0

f+(z)z
n−1dz, (IV.2-83)

(−1)nCu
n

∣∣∣
only (−1)n terms

An−1n
=

∫ ∞
0

f−(z)z
n−1dz. (IV.2-84)
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With such a separation the summation of series (IV.2-81) gives

δqu
(
x,∆2

)
=
−1
2A

∫ 1

−1
dη

∫ 1

0

dβ

β

{
θ(x > 0)

[
f+

(
|x|
βϵt

)
qu(−β)− f−

(
|x|
βϵt

)
qu(β)

]
+ θ(x < 0)

[
f+

(
|x|
βϵt

)
qu(β)− f−

(
|x|
βϵt

)
qu(−β)

]}
, (IV.2-85)

where qu(β) = quv (β) + qus (β) and qu(−β) = −qus (β). One can see that this result

differs from eqn. (IV.2-65) only by the form of the convolution q(β) with f±.

The results for the impact parameter dependent PDF are similar to the previous

ones, (IV.2-73) and (IV.2-75). The only change is that the convolution in that

formulae has to be replaced by

[q ⊗ f ](z) =

∫ 1

0

dβ

β
θ(x > 0)

[
qu(β)f+

(
z

β

)
− qu(−β)f−

(
z

β

)]
+θ(x < 0)

[
qu(−β)f+

(
z

β

)
− qu(β)f−

(
z

β

)]
, (IV.2-86)

where g̃± and f̃± are defined as in (IV.2-83)-(IV.2-84).

The coefficients (IV.2-82) can be approximated in the form

Cu
n = An−1

(
c0 +

c1
n+ 1

+
(−1)nc2
n+ 1

)
, (IV.2-87)

where

A = 1.14861, c0 = 0.7594, c1 = 1.2451, c2 = 0.7639.

This approximation works as good as the approximations (IV.2-52). In the large-N

limit these coefficients are

A =
N

2
, c0 = c1 = c2 = 1.

The transverse size of the pion grows with smaller x as 1/xα, see. exp.(IV.2-

77). However, it is interesting to mark, that the full expression (IV.2-73) has two

different areas of behavior. In the area of asymptotically small x ≪ m
F
, the size

of pion grows asymptotically, i.e. as 1/xα. But at x ∼ m
F

it grows as ∼ x−1, i.e.

stronger. Therefore, this area mainly contribute to the average size of pion, ⟨b2⟩. In
the massless limit this ”chiral inflation” of the pion leads to the divergence of pion

radius, ⟨b2⟩ ∼ lnmπ. These two areas are clearly seen3 in the fig.(IV-5).

The popular way to parameterize the ∆-dependence of PDF is so-called ”Gribov

3As the PDF in the chiral limit
o
q (x) we have taken the usual pion PDF, with non-zero mass

from ref. [75]. However, in principal one should to find out the expression for
o
q (x) solving the

equation q(x) =
o
q (x) + δq[

o
q (x)].
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Figure IV-5: The density plot of xδq(x, b) in within approximation (IV.2-87) for
massive (left) and massless (right) cases.
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Figure IV-6: The density plot of xδq(x, b) in within ”Gribov diffusion” anzatz (left).
The right plot is the comparison of isolines profiles of xδq(x), right-up is the profile
for fig.IV-5(left) density plot, right-down is the profile for ”Gribov diffusion” ansatz.

diffusion” ansatz [65]:

q(x,∆2) = q(x)e−α
′∆2 ln( 1

x).

The comparison of our expression with the ”Gribov diffusion” ansatz gives the fol-

lowing results: In the Gribov picture the pion impact distribution fall down as e−b
2
,

in our calculations it falls down power-like (however, at large distances it is also

exponentially suppressed, see (IV.2-79)); The most part of the pion radius in the

Gribov picture is concentrated at x → 0, in contrast to our result that is mainly

concentrated at x ∼ m
F
. Therefore, shortly one can say that in the chiral expansion

the pion is fatter at ”not-so-small” x ∼ m
F
. The comparison of the ”Gribov diffusion”

ansatz and the chiral expansion are shown in fig.(IV-6). The average radiuses of pion
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for these two models are√
⟨b2⟩(IV.2-73) ≃ 0.3fm,

√
⟨b2⟩Gribov ≃ 0.57fm.

Therefore, we can estimate the contribution of the higher chiral terms as 40%.



Conclusion

We have studied the logarithmical structure of the perturbative expansion in an

EFT. It has been show that in massless EFTs the logarithms of the given order (i.e.

leading order, next-to-leading order and so on) can be obtained at any order of the

perturbative expansion, under foreseeable volume of calculations. Particulary, we

have presented and investigated two independent methods for obtaining the LLog

coefficients in a massles EFT.

The first method is based on the fact that in the massless EFT the coefficients

of IR logarithms coincide with the coefficients of RG logarithms. The later can be

found using the RG invariance (I.4-23), which for the non-renormalizable theories

leads to the infinite set of the ordinary differential equations. Investigating the

topological properties of graphs which give the RG coefficients, we have derived the

general method to construct the recursive equations of the LLog coefficients. These

equations present the generalization of the well-known RGEs for theories with an

infinite number of interaction terms (non-renormalizable theories).

The structure of the recursive equations is directly connected with the topological

structure of the one-loop graphs of the theory. Therefore, they have the same form

for any theory of given topology and differ only by the kernels. The kernels are given

by the LLog coefficient of the one-loop graphs with the vertices of arbitrary orders.

Thus, one has to introduce the general form of the higher order Lagrangians. In the

sector of 4-field interaction the higher order Lagrangian can be effectively presented

through the Legendre polynomial (II.3-41) operator basis. This basis possess the

”conformal-like” properties (A.1-7) which dramatically simplify the calculations.

We have presented in details the derivation of the recursive equations for the 4-

point amplitude (II.3-36), for the FF (II.4-63) and for the 6-point amplitude (II.6-93),

within an EFT with the lowest 4-field interaction. The kernels for these equation

calculated within the Legendre basis are presented, e.g. (II.3-52,II.4-64,II.4-68).

The calculation was done for models with different groups of isotopic symmetry:

O(N + 1)/O(N), SU(N)× SU(N) and O(N +K)/O(N)O(K).

The second method is based on the idea that the logarithms of the perturbative

expansion cause the cuts in the complex plane of amplitude kinematic variables.

Moreover, the two-particle cuts are related to LLogs, three-particle cuts are related

to NLLog and so on. The properties of the cuts are fixed by the unitarity relation

104



Singular contribution to pion distribution functions 105

and by the crossing symmetry. That allows to find the relations between logarithm

coefficients of different order of the perturbative expansion in the form of recursive

equations (III.2-37), which is very similar to the RG recursive equation. Fixing of

the tree-order of the amplitude, which enters to the recursive equation through the

boundary condition, leads the fixing of LLogs at all orders.

The kernel of the recursive equation is composed from the crossing matrices both

in group and momentum spaces (III.2-38). And it is general, in the sense that it is

not depend on the particular realization of the Lagrangian, but only on the group of

Lagrangian symmetries. The particular realization of EFT enters only through the

boundary conditions.

We presented the expressions for wide classes of theories, including the renormal-

izable QFTs (III.2-39), QFTs in arbitrary even space-time dimension (III.2-47) and

QFTs with the mixed interaction (III.2-41). Also we have explicitly demonstrated

the method on the example of O(N + 1)/O(N), SU(N)× SU(N) σ-models in four

and D dimensions.

The methods are independent of each other. Their relative advantages and dis-

advantages are followed:

• The method based on the RG invariance is more ”fundamental”, in the sense

that its generalization on the other types of EFTs (such as the theories with

the three-field interactions) is straightforward. In the contrast, the ”analytical”

method can not be applied for the EFTs with three-field interaction terms.

• The calculations of the equation kernel in the ”analytical” method reduces

to the pure algebraic operations, which can be done once for large classes

of theories. On the other hand, the obtaining of the ”RG” equation kernel

supposes the independent loop-calculation for every QFT.

• The equation given by the ”analytical” method (III.2-37) has the simpler struc-

ture, than the equation obtained by the ”RG” method (II.3-36). The timing of

the numerical evaluation of the recursive equation in the form (III.2-37) is sev-

eral times lower than for the equation in the form (II.3-36). Also the simplicity

of eqn. (III.2-37) gives up hope to solve it explicitly.

Both these methods produce the same results, that provides the strong cross-

check of them. The results of calculations of the LLog coefficients in considered

models are coincided with known 2-loop calculations [12],[42],[48], etc. (see citations

in the text). Also the presented methods provide the correct large-N expansion of

the considered theories. The obtained equations in the renormalizable theories give

the well known results of the one-loop (or LLog) evolution.

The main problem of these methods is that they are not applicable to QFTs with

masses. For the ”RG” method, it is connected with the non-triviality of massive
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tadpole graphs. Tadpoles infinitely increase the number of graph topologies to be

considered at given order of logarithms. This make the possibility to build close

system of relations for logarithm coefficients impossible. For the ”analytical” method

the presence of mass means presence of the additional parameter in equations on

coefficients. At the same time, the number of equations remains the same.

From the practical point of view the calculation of the LLog terms at high orders

in an EFT is not important. The IR logarithmical rising weaken on the background

of the power lowering. However, there is the large class of tasks where the logarith-

mical contributions are very important. These are the tasks of considering the chiral

behavior of the non-local operators. And particulary there are light-cone operators,

which play an important role in the hadron physics.

The cancelation of the power behavior by the light-cone distance at small-x region

makes the LLog contribution much large than others. The presence of singularity,

which is a consequence of the loop-convolution of local and non-local vertices, makes

the task of all order summation necessary. Such summation of LLog singular terms

was performed for pion partonic distributions with the help of methods mentioned

above, (IV.2-44,IV.2-60). We have shown that such resummation restores the leading

order chiral behavior of the distribution and gets rid of unphysical singularities.

The explicit resummation allowed us to reveal novel phenomena in the quark mass

expansion of PDFs, low energy behavior of GPDs and amplitudes of hard exclusive

processes. The main qualitative (model independent) results are the following:

• The leading small mπ asymptotic behavior in the region of small x of pion

PDFs depends on the intercept (α) of the corresponding Regge trajectory:

q(x) ∼ 1

xα

[
m2
π

(4πFπ)2
ln

(
1

m2
π

)]α
.

We have considered the Regge-like behavior of PDFs for simplicity, one can

easily obtain corresponding leading chiral corrections for other types of small

x behavior of PDFs;

• The leading small t behavior of the amplitude for hard exclusive processes on

the pion target has the form:

Im A(ξ, t) ∼ 1

ξα

[
|t|

4(4πFπ)2
ln

(
1

|t|

)]α
.

Measurements of such processes at small xBj and small t would allow us to

probe the chiral dynamics in a completely new regime – the dynamics of chiral

and quark–gluon degrees of freedom intertwines.

• The leading large impact parameter (b⊥) behavior of the quark distribution

in the transverse plane can be obtained within the logarithmical accuracy (we
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show the result for mπ = 0, the result for mπ ̸= 0 is given in eqn.(IV.2-79)):

q(x, b⊥) ∼
1

xα
lnα−1(b2⊥)

(b2⊥)
1+α

.

The distribution of quarks at large impact parameter is controlled completely

by the all order resummed ChPT developed in the thesis. This asymptotic

behavior is determined by the small-x behavior of usual PDFs, hence this

asymptotic behavior depends on the scale, at which the corresponding PDF is

defined. This is new and interesting result – the chiral expansion meets the

QCD evolution.

• The transverse size of the pion is strongly increased at x ∼ m
F
. This effect

(called ”chiral inflation”) is mainly responsible for the formation of the pion

radius.

The complete results for the resummation of ChPT for pion PDFs and GPDs are

given in the main body of the thesis.

There are many ways for a generalization and expansion of the presented methods.

The most interesting of them are: the consideration of the EFT with fermions; the

consideration of the non-renormalizable theories with three-field interaction terms;

the considering of the QFT in odd dimension; the consideration of the next-to-leading

effects and non-zero mass. The solution of these problems will allow one to clarify

such important physical tasks as the calculation of the leading quantum correction

to the gravitation processes, in particular Newton law, the calculation of the critical

indices in the solids state physics and so on. The presented methods can be used as

a simple and powerful tool for the investigation of the perturbative series.



A

Loop-calculation

A.1 The basic loop integral

The basic integral for the calculation of the one-loop β-function of g(4) coupling

constant (II.3-52) has the following form:

AiA ∗ An−i,B =

∫
dDl

(2π)D
AiA(p1, p2, l − P,−l)An−i,B(l, P − l, p3, p4)

l2(p1 + p2 − l)2
, (A.1-1)

where D = 4− 2ε, P = p1 + p2, and the function A is given by exp. (II.3-42)

AnC = i(−1)n+1[(k1 + k2)
2]nPC

(
(k1 − k2) · (k3 − k4)

(k1 + k2)2

)
.

For the calculation of the β-function we need to extract the pole coefficient of this

integral.

Making the Wick rotation and general simplifications, one rewrites the integral

(A.1-1) in the form

AiA ∗ An−i,B = i(−1)B(−1)n+1
(
P 2
)n ∫ dDl

(2π)D

PA

(
2 (∆1l)

P 2

)
PB

(
2 (∆2l)

P 2

)
l2(P − l)2

, (A.1-2)

where we have introduced the notations

∆1 = p1 − p2, ∆2 = p3 − p4.

In exp. (A.1-2) we have neglected the terms proportional to P∆i, because their

counterterm is proportional to the ∂2π-structure, see details in the text after exp.

(II.3-39)
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Using the explicit form of the Legendre polynomial

PA(x) =
(−1) 3A

2

2A

A∑
n=0

(−1)n
2 (n+ A)!xn(

A+n
2

)
!
(
A−n
2

)
!n!

,

where the summation goes over even (odd) n for even (odd) A. We rewrite the basic

integral as the double sum

AiA ∗ An−i,B = i(−1)n+B+1 (P
2)
n

(2π)D
(−1) 3

2
(A+B)

2A+B
· (A.1-3)

A,B∑
k,m=0

(k + A)!(m+B)!(
A+k
2

)
!
(
A−k
2

)
!
(
B+m

2

)
!
(
B−m

2

)
!

Ik,m
k!m!

,

where

In,m =
1

(P 2)n+m

∫
dDl

(∆1l)
n(∆2l)

m

l2(P − l)2
.

This integral is considered in book [76] with the result:

In,m =
πD/2

(−P 2)ε
∆µ1

1 ..∆
µn
1 ∆ν1

2 ..∆
νm
2

(P 2)n+m
· (A.1-4)

n+m
2∑

r=0

ANT (1, 1; r, n+m)

(
P 2

2

)r
{[g]r[P ]m+n−2r}µ1..µnν1..νm ,

where ANT is the construction of Gamma-functions which will be given later, and

{[g]r[P ]m+n−2r}µ1..νm is a totally symmetric tensor of (m + n) rang composed from

tensors gµν and vectors Pµ.

The contraction of the ∆µ and Pµ does not contribute to the counterterm. There-

fore, the terms with metric tensors contribute to the sum (A.1-4). The summation

index r takes only the value m+n
2

. The contractions of the Lorentz indices are given

by the expression

∆µ1
1 ..∆

µn
1 ∆ν1

2 ..∆
νm
2 {[g]

n+m
2 }µ1..µnν1..νm = (A.1-5)

min[m,n]∑
k=0

m!n!

2
m+n−2k

2

(
n−k
2

)
!
(
m−k
2

)
!k!

(
∆2

1

)n−k
2
(
∆2

2

)m−k
2 (∆1∆2)

k ,

where the summation goes in such way that (n− k) and (m− k) are simultaneously

even numbers.
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The coefficient ANT for r = n+m
2

is given by the expression

ANT (1, 1;
n+m

2
, n+m) = Γ

(
ε− n+m

2

)
B

(
n+m

2
+ 1− ε, n+m

2
+ 1− ε

)
=

(−1)n+m
2

ε

(
n+m
2

)
!

(n+m+ 1)!
+O(ε0). (A.1-6)

Substituting expressions (A.1-5) and (A.1-6) to exp. (A.1-3) and using that

∆2
1 = ∆2

2 = −P 2 one can perform the summation over k and m with the help of

the hypergeometric series [77]. The result of the summation can be rewritten in the

form of Legendre polynomial:

AiA ∗ An−i,B =
i(−1)A(−1)n+1 (P 2)

n

(4π)2ε
PA

(
(∆1∆2)

P 2

)
sin
[
A−B
2
π
]

A(A+ 1)−B(B + 1)
+O(ε0),

where A and B are supposed to be both even or odd, otherwise the sum gives zero.

The right hand side of the expression is proportional to the Kronecker delta. Taking

the limit B → A one obtains

AiA ∗ An−i,B =
(−1)A

(2π)2ε

δAB
2A+ 1

AnA +O(ε0). (A.1-7)

The loop-contraction of B and C structures (II.3-42), in the corresponded channel

is also diagonal, i.e.

BiA
t∗ Bn−i,B =

∫
dDl

(2π)D
BiA(p1, l, P − l, p4)Bn−i,B(l − P,−l, p2, p3)

l2(p1 + p4 − l)2
(A.1-8)

=
(−1)A

(2π)2ε

δABBnA

2A+ 1
+O(ε0),

CiA
u∗ Cn−i,B =

∫
dDl

(2π)D
CiA(p4, p2, l, l − P )Cn−i,B(l − P,−l, p3, p1)

l2(p2 + p4 − l)2
(A.1-9)

=
(−1)A

(2π)2ε

δABCnA
2A+ 1

+O(ε0),

where the subscript above the asterisk denotes the loop integral corresponding to

the second(
t∗) and the third (

u∗) graphs in fig.2.3.

A.2 β-function in the O(N + 1)/O(N) σ-model

The one-loop β(4) function in the O(N + 1)/O(N) σ-model is given by the pole

coefficients of the diagrams shown in fig. 2.3. The Feynman rule for the vertices was
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obtained in the chapter 2, (II.3-42). It reads

V abcd
nC (k1, k2, k3, k4) = gnC

[
δabδcdAnC + δadδbcBnC + δacδbdCnC

]
, (A.2-10)

AnC = i(−1)n+1[(k1 + k2)
2]nPC

(
(k1 − k2) · (k3 − k4)

(k1 + k2)2

)
,

BnC = i(−1)n+1[(k1 + k4)
2]nPC

(
(k1 − k4) · (k2 − k3)

(k1 + k4)2

)
,

CnC = i(−1)n+1[(k1 + k3)
2]nPC

(
(k1 − k3) · (k2 − k4)

(k1 + k3)2

)
.

The notation for the incoming momenta and indices are the same as shown in fig.2.4.

The s-channel diagram Gs (the left in fig.2.3.) gives the expression

Gs(i, A;n− i, B) =
giAgn−i,B

2
(δabδkmAiA + δakδbmBiA + δamδbkCiA) ∗ (δkmδcdAn−i,B +

+δkdδmcBn−i,B + δkcδmdCn−i,B),

where the asterisk denotes the loop-contraction in the s-channel, (A.1-1). The coef-

ficient one-half instead of the expression is the symmetric coefficient for the diagram.

Contracting the group indices one obtains:

Gs =
giAgn−i,B

2

[
δabδcd · (A.2-11)

(NAiA ∗ An−i,A + AiA ∗Bn−i,A + AiA ∗ Cn−i,A +BiA ∗ An−i,A + CiA ∗ An−i,A)
+δadδcd (BiA ∗Bn−i,A + CiA ∗ Cn−i,A)
+δacδbd (BiA ∗ Cn−i,A + CiA ∗Bn−i,A)

]
.

In order to express exp. (A.2-11) through the basic integral (A.1-7), we introduce

the expansion:

BnA =
n∑

B=0

(−1)AΩAB
n AnB (A.2-12)

CnA =
n∑

B=0

(−1)BΩAB
n AnB (A.2-13)
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where the ΩAB
n is given by exp. (II.3-48). Thus, exp. (A.2-11) can be rewritten as

Gs =
giAgn−i,B

2

i,n−i∑
J1,J2=0

AiJ1 ∗ An−i,J2
[

δabδcd
(
NδAJ1δBJ2 +

(
(−1)J2 + (−1)B

)
δAJ1ΩBJ2

n−i +
(
(−1)J1 + (−1)A

)
ΩAJ1
i δBJ2

)
+δadδbc

(
(−1)J1+J2 + (−1)A+B

)
ΩAJ1
i ΩBJ2

n−i

+δacδbd
(
(−1)J1+B + (−1)A+J2

)
ΩAJ1
i ΩBJ2

n−i

]
.

Using basic loop-integral (A.1-7) one obtains

Gs =
giAgn−i,B
(4π)2ε

n∑
J=0

AN,J
2J + 1

[
δabδcd

(N
2
δAJδBJ + δAJΩBJ

n−i + ΩAJ
i δBJ

)
+δadδcd(−1)JΩAJ

i ΩBJ
n−i + δacδbdΩAJ

i ΩBJ
n−i

]
+O(ε0),

where we have put (−1)A = (−1)B = 1, since A and B runs only through the even

values.

Making the similar calculation for the last two diagrams in fig 2.4., and taking

the sum of them one obtains the complete one-loop expresion

G =
giAgn−i,B
(4π)2ε

n∑
J=0

δabδcd

2J + 1

[
(A.2-14)

(N
2
δAJδBJ + δAJΩBJ

n−i + ΩAJ
i δBJ

)
AnJ + (−1)JΩAJ

i ΩBJ
n−iBnJ + ΩAJ

i ΩBJ
n−iCnJ

]

+

(
b↔ d

p2 ↔ p4

)
+

(
b↔ c

p2 ↔ p3

)
+O(ε0).

Expanding BnJ and CnJ in the square brackets over AnC (A.2-12-A.2-13), one repro-

duces the expression for the vertex VnC (A.2-10):

G(i, A;n− i, B) =
giAgn−i,B
(4π)2ε

n∑
C=0

β(i, A;n− i, B/C)VnC +O(ε0),

where the pole coefficient has the form

β(i, A;n− i, B/C) = (A.2-15)

N

2

δABδAC
2C + 1

+
δACΩ

BA
n−i + δBCΩ

AB
i

2C + 1
+ (1 + (−1)C)

min[i,n−i]∑
J=0

ΩAJ
i ΩBJ

n−iΩ
JC
n

2J + 1
.

It is the required one-loop expression for the β(4)-function (II.2-14). The factor

(1 + (−1)C) makes the extraction of the odd C vertices in the Lagrangian.
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We have presented the β functions of the other models (the SU(N) × SU(N)

σ-model see the list after the formula (II.5-82), the matrix O(N +K)/O(N)×O(K)

σ-model see the list after (II.5-85)) without an explicit derivation, since it differs only

by the group indices convolutions. Also we note that in the matrix model the odd

values of auxiliary indices are presented, and one should be careful with it during

the calculation.

A.3 Calculation of anomalous dimensions

For the calculation of the anomalous dimensions for FF operators one needs to calcu-

late the loop-integrals with open indices, particulary, with one and two open indices.

The usual algorithm of computation of such integrals is the projecting of the

integral onto all possible Lorenz structures composed from vectors P and q. After

the projecting the denominator of the resulted integral can be simplified using that

P∆i ∼ 0 and that the terms ∼ l2 and ∼ (P − l)2 turns the loop-integral to zero. The

only unusual term is (∆l). It can be absorbed to the Legandre polynomial using the

Legandre recursive formula

xPB(x) =
B

2B + 1
PB+1(x) +

B

2B + 1
PB−1(x).

After all one obtains the linear equation system with integrals in the formAi,0∗An−i,B,
(A.1-7). The list of needed integrals is the following

∫ lµPB

(
2l∆
P 2

)
l2(P − l)2

ddl =
Pµ
2ε
δB0 −

∆µ

6ε
δB1 (A.3-16)

∫ lµlνPB

(
2l∆
P 2

)
l2(P − l)2

ddl = gµν
P 2

ε

[δ2B
60
− δ0B

12

]
(A.3-17)

+
PµPν
ε

[δB0

3
− δ2B

60

]
+

∆µ∆ν

20ε
δB2 −

[
∆µPν + Pµ∆ν

]δB1

12ε

In this section we demonstrate explicitly the calculation of the anomalous dimen-

sion for the tensor operators (II.4-71)-(II.4-72). The anomalous dimension for the

vector (II.4-67) and the scalar (II.4-60) operators was obtained in the same way.

There is only one diagram needed to be calculated, see fig.2.6. The loop integral

for this diagram is of the s-channel type (A.1-1). Therefore, it is useful to expand

the 4-pion vertex over An,C (A.2-10) and multiply on δab from the operator vertex:

δabV ab,cd
n−i,A = δcd

n−i∑
B=0

[
NδAB +

(
(−1)A + (−1)B

)
ΩAB
n−i
]
An−i,B. (A.3-18)

The loop-convolution of the currents Jµν1,2 (II.4-71-II.4-72) can be obtained with exp.
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(A.3-16-A.3-17)

Jµν1,i ∗ An−i,B = fign−i,B
(−s)n

2ε

[
(gµνq

2 − qµqν)
(δB2

30
− δB0

3

)
+ PµPν

δB2

10

]
+O(ε0),

(A.3-19)

Jµν2,i ∗ An−i,A = −hign−i,B
(−s)n

2ε

[
(gµνq

2 − qµqν)
(δB2

30
− δB0

6

)
+ PµPν

δB2

10

]
+O(ε0),
(A.3-20)

where we have used the notation for incoming momenta as in exp. (II.4-69), the

factor one-half is the symmetry factor of diagram, fig.2.6.

The right hand sides of exp. (A.3-19-A.3-20) have to be expressed in the form

of (II.4-71)-(II.4-72). The pole coefficients near the corresponding expressions give

its anomalous dimension. Thus, the one-loop anomalous dimensions for the tensor

operators are

Zf = fign−i,AZ
ff + hign−i,AZ

fh (A.3-21)

=
n−i∑
B=0

[
NδAB +

(
(−1)A + (−1)B

)
ΩAB
n−i
]

[
fi

(δB2

30
− δB0

3

)
+ hi

(δB0

6
− δB2

30

)]
gn−i,A,

Zh = fign−i,AZ
fh + hign−i,AZ

hh (A.3-22)

=
n−i∑
B=0

[
NδAB +

(
(−1)A + (−1)B

)
ΩAB
n−i
]

[
fi

(δB2

15
− δB0

3

)
+ hi

(δB0

6
− δB2

15

)]
gn−i,A.

In the matrix form these expressions are(
Zff Zfh

Zhf Zhh

)
=
(
NδAB + 2ΩAB

n−i
) [δB0

3

(
1 − 1

2

1 − 1
2

)
+
δB2

15

(
−1

2
1
2

−1 1

)]
. (A.3-23)

The anomalous dimensions for the scalar and the vector currents are presented

in (II.4-64) and (II.4-68) respectively.
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Matrix Ω

B.1 Properties of Ω in D = 4

The operator Ω̂ implements the crossing transformation in the momentum space of

the 4-particle amplitude between s- and t-channels:

Ω̂A(s, t, u) = A(t, s, u), (B.1-1)

where s, t and u are usual Mandelshtam variables, connected by the momentum

conservation law: s+ t+ u = 0.

We are interested in the LLog realization of the operator Ω̂. Toward this aim we

introduce the matrix Ωn in the space of partial waves, which realizes the crossing

transformation of the n’th order of the momentum expansion , i.e.

A(t, s, u) =
∞∑
n=0

n∑
A=0

anAt
nPA

(
1 +

2s

t

)
(B.1-2)

=
∞∑
n=0

n∑
A,B=0

anAΩ
AB
n snPB

(
1 +

2t

s

)
= Ω̂A(s, t, u).

Therefore, the matrix element ΩAB
n satisfies the relation

(η − 1)n

2n
PA

(
η + 3

η − 1

)
=

n∑
B=0

ΩAB
n PB(η),

where η is the cosine of the s-channel scattering angle in the c.m.s. system, η = 1+ 2t
s
.

Using the orthogonality of the Legandre basis one obtains the integral representation
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for matrix element of Ωn

ΩAB
n =

(2B + 1)

2n+1

∫ 1

−1
dx PA

(
x+ 3

x− 1

)
(x− 1)nPB(x). (B.1-3)

The indices A and B are constrained from 0 to n. Thus, Ωn is a (n + 1) × (n + 1)

matrix.

The operator Û implements the (t ↔ u) crossing transformation. Its matrix

realization is the following

ÛA(s, t, u) = A(s, u, t), UAB = δAB(−1)A. (B.1-4)

The definitions of crossing transformations (B.1-1) and (B.1-4) imply the follow-

ing relations between the operators

Ω̂Ω̂ = Û Û = I, Ω̂ÛΩ̂ = ÛΩ̂Û ,

where I is the equivalence transformation. In terms of matrices these relations read

n∑
J=0

ΩAJ
n ΩJB

n = δAB,

n∑
J=0

ΩAJ
n (−1)JΩJB

n = (−1)A+BΩAB
n . (B.1-5)

These expressions can be checked by the direct computation of sums using the inte-

gral representation (B.1-3) and the completeness relation of the Legendre polynomi-

als.

For numerical computations one needs the explicit expression for the Ωn ma-

trix element, which can be presented through the hypergeometric function of the

Saalschutz form (see e.g.[77])

ΩAB
n =

(−1)B+n(2B + 1)

(n+B + 1)!

n!n!

(n−B)!
4F3

(
−A,A+ 1,−B − n− 1, B − n

−n,−n, 1

∣∣∣∣∣ 1
)
.

(B.1-6)

The Saalschutz form of the hypergeometric function allows one to obtain particular

values of Ω through the elementary functions, e.g.

Ω0B
n = (−1)n+B (2B + 1) n!n!

(n+B + 1)!(n−B)!
, ΩA0

n = (−1)n+A (n− A)!(k + A+ 1)!

(n+ 1)!(n+ 1)!
,

ΩAn
n =

n!n!

(2n)!
, ΩnB

n = (2B + 1)(2n+ 1)!
[ n!

(n−B)!(n+B + 1)!

]2
.

The following relations often appear during the consideration of recursive equations
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(III.2-37), (II.4-63)

n∑
J=0

ΩBJ
n = δn,A

(2n)!

n!n!
,

n∑
J=0

(−1)JΩBJ
n = (−1)n+B (B.1-7)

min[i,n−i]∑
J=0

Ω0J
i Ω0J

n−iΩ
J0
n

2J + 1
=

(n− i)!(n− i)!i!i!
(n+ 1)!(n+ 1)!

= B2(i, n− i)

n∑
C=0

ΩBC
n

2C + 1
=

(−1)n+B

2

Γ(n+ 1
2
−B)Γ(n+ 3

2
+B)

Γ2(n+ 3
2
)

Often one needs to transform the partial expansion of amplitude (B.1-2) to the

power expansion:

A(s, t, u) =
∞∑
n=0

n∑
l=0

anls
nPl

(
1 +

2t

s

)
=
∞∑
n=0

n∑
k=0

χnks
n−ktk. (B.1-8)

The coefficients χnk are connected with the coefficients anl in the following way

χnk =
n∑
l=k

1

k!k!

(k + l)!

(l − k)!
anl (B.1-9)

anl =
n∑
k=0

Ω0,l
k χnk,

The crossing relations for power decompositions leads to the following useful relations

J∑
k=C

Ω0C
k

(J + k)!

(J − k)!
1

k!k!
= δJC ,

l∑
C=k

Ω0C
l

(C + k)!

(C − k)!
1

k!k!
= δkl,

J∑
k=0

Ω0C
n−k

(J + k)!

(J − k)!
1

k!k!
= ΩJC

n ,

n−C∑
k=0

Ω0C
n−k

(J + k)!

(J − k)!
1

k!k!
= ΩJC

n ,

n∑
C=0

Ω0C
n−kΩ

CA
n = Ω0A

k ,
n∑

C=0

ΩAC
n−kΩ

C0
n =

Ω0A
k

2A+ 1
. (B.1-10)

B.2 Properties of Ωn,D

In the D dimensions the partial wave expansion is defined through the Gegenbauer

polynomials (III.2-46). The realization of the crossing operator (B.1-1) can be done
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in the similar way:

A(t, s, u) =
∞∑
n=0

n∑
A=0

aDnAt
nC

D−3
2

A

(
1 +

2s

t

)
=

∞∑
n=0

n∑
A,B=0

aDnAΩ
AB
n,Ds

nC
D−3
2

B

(
1 +

2t

s

)
= Ω̂A(s, t, u). (B.2-11)

Therefore, the matrix element of Ωn,D satisfies

(z − 1

2

)n
C

D−3
2

A

(z + 3

z − 1

)
=

n∑
B=0

ΩAB
n,DC

D−3
2

B (z). (B.2-12)

The orthogonality of the Gegenbauer polynomials leads to the integral representation

for the matrix element

ΩAB
n,D =

2B +D − 3

2

2D−4B!

Γ(B +D − 3)
(B.2-13)

Γ2
(
D−3
2

)
π

·
∫ 1

−1
(1− z2)

D−4
2

(z − 1

2

)n
C

D−3
2

A

(z + 3

z − 1

)
C

D−3
2

B (z)dz.

The indices A and B runs from 0 to n.

The matrix U , which realize the (t↔ u) crossing transformation, is the same as

for D = 4 case, (B.1-4).

The group properties of the crossing transformations lead to the relations, similar

to (B.1-5),

n∑
B=0

ΩAB
n,DΩ

BC
n,D = δAC ,

n∑
B=0

ΩAB
n,D(−1)BΩBC

n,D = (−1)A+CΩAC
n,D. (B.2-14)

For numerical computations it is convenient to represent the Ωn,D matrix through

the hypergeometric function of the Saalschutz form:

ΩAB
n,D =

(−1)B+n(2B +D − 3)

Γ(n+B +D − 2)

n!

(n−B)!

Γ(A+D − 3)

A!

Γ(n+ D−2
2

)

Γ(D−2
2

)
(B.2-15)

4F3

(
−A,A+D − 3,−B − n−D + 3, B − n

−n,−n− D−4
2
, D−2

2

∣∣∣∣∣ 1
)
,

The often meeting particular values of Ωn,D are

Ω0B
n,D = (−1)n+B2D−4(2B +D − 3)

Γ
(
D−3
2

)
√
π

n!Γ
(
n+ D−2

2

)
(n−B)!Γ(n+B +D − 2)

,

ΩA0
n,D = (−1)n+A (D − 3)Γ(A+D − 3)

Γ(n+D − 2)A!

Γ
(
n+ A+ 3D−8

2

)
Γ
(
n− A+ D−2

2

)
Γ
(
n+ 3D−8

2

)
Γ
(
D−2
2

) ,
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ΩAn
n,D =

n!Γ
(
n+ D−2

2

)
Γ (2n+D − 3) Γ

(
D−2
2

) Γ(A+D − 3)

A!
,

ΩnB
n,D =

(2B +D − 3)Γ(n+D − 3)

(n−B)!Γ(n+B +D − 2)

Γ
(
n+ D−2

2

)
Γ
(
2n+ 3D−8

2

)
Γ
(
n−B + D−2

2

)
Γ
(
n+B + 3D−8

2

) .
At the large D the matrix Ωn,D has an asymptotic behavior as ΩAB

n,D ∼ DA−B.

The relation between the power expansion in D dimensions and the partial wave

decomposition is given by

χnk =

D−4
2

(n−1)∑
l=k

4lΓ
(
D−3
2

+ k
)
Γ (l + k +D − 3)

k!Γ
(
D−3
2

)
Γ(2k +D − 3)(l − k)!

anl

anl =

D−4
2

(n−1)∑
k=0

Ω0,l
k,Dχnk,

where χnk is the coefficient near the tks
(D−4)

2
(n−1)−k structure.
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Properties of recursive equation

C.1 Solution in form of large-N expansion for O(N)

models

The models with O(N)-symmetry are solvable in the large-N limit. On diagrammatic

level the leading large-N contribution corresponds to accounting only the chain di-

agrams, fig.2.4. The next-to-leading orders of large-N expansion are given by the

addition of the chains to diagrams. At that the number of chains in a diagram

corresponds to the order of large-N expansion. The calculation of such diagrams is

a difficult task in EFT, because the divergenceness of any loop-integral makes the

R-operation over diagrams with many loops highly non-trivial, even at the LLog ap-

proximation. However, with the help of recursive equation (II.3-36) the expression

for the LLog part of large-N expansion can be found explicitly order by order without

difficult calculations.

The LLog coefficient ωnC is given by eqn. (II.3-36). The initial value for the

iteration is ω10 = 1. The β-function for the model was calculated in the second

chapter (II.3-52) and has the form

β(i, A;n− i, B/C) =
N

2
β0 + β1 (C.1-1)

where

β0 =
δABδAC
2C + 1

,

β1 =
δACΩ

BA
n−i + δBCΩ

AB
i

2C + 1
+ 2

1 + (−1)C

2

min[i,n−i]∑
J=0

ΩAJ
i ΩBJ

n−iΩ
JC
n

2J + 1
.
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The solution of eqn. (II.3-36) is a polynomial over N
2
, with the maximal power

(n− 1), i.e.

ωnC =

(
N

2

)n−1
ω
(0)
nC +

(
N

2

)n−2
ω
(1)
nC + ...+ ω

(n−1)
nC . (C.1-2)

Substituting this ansatz to eqn. (II.3-36), and collecting the terms near the equal

powers of N/2 one obtains a set of recursive equations(
N

2

)n−1
: ω

(0)
nC =

1

n− 1

∑
i,A,B

β0ω
(0)
iA ω

(0)
n−i,B , (C.1-3)

(
N

2

)n−2
: ω

(1)
nC =

1

n− 1

∑
i,A,B

β0

(
ω
(1)
iA ω

(0)
n−i,B + ω

(0)
iA ω

(1)
n−i,B

)
+

1

n− 1

∑
i,A,B

β1ω
(0)
iA ω

(0)
n−i,B ,

...
...

...(
N

2

)n−k−1
: ω

(k)
nC =

1

n− 1

∑
i,A,B

β0

k∑
j=0

ω
(j)
iAω

(k−j)
n−i,B +

1

n− 1

∑
i,A,B

β1

k−1∑
j=0

ω
(j)
iAω

(k−j−1)
n−i,B ,

...
...

... ,

where
∑

i,A,B =
∑n−1

i=1

∑i
A=0

∑n−i
B=0. The boundary conditions are ωk>nn,C = 0 and

ω
(0)
10 = 1. All these equations, except the first one, are linear. Therefore, they can be

solved by regular methods.

The main problem in the large-N expansion produces only the leading term.

However, for the O(N)-type models, the solution for the leading term can be easily

found. The equation for ω(0) has the form of the RG equation of a renormalizable

theory, because its kernel does not depend on n. Thus, one can convince that the

solution for the leading large-N terms is

ω
(0)
nC = δC0. (C.1-4)

This result is well-known and can be found in many textbooks, e.g. [32]

Such simple leading-N solution makes a big simplification on all other orders

of expansion. In the off-leading equations in the system (C.1-3) the unknown ω is

contracted with ω
(0)
nC and β0 only. Therefore, the equation for ω(k) has the form

ω
(k)
nC =

2δC0

n− 1

n−1∑
i=1

ω
(k)
i0 + f

(k)
C (n), (C.1-5)

where

f
(k)
C (n) =

1

n− 1

n−1∑
i=1

k−1∑
j=1

ω
(j)
iC ω

(k−j)
n−i,C

2C + 1
+

1

n− 1

∑
i,A,B

β1

k−1∑
j=0

ω
(j)
iAω

(k−j−1)
n−i,B .
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The procedure of solution for this equation is discussed in the next section. The

result is

ω
(k)
nC = f

(k)
C (n) + δC0

n−1∑
m=1

2n

(m+ 1)m
f
(k)
0 (m). (C.1-6)

This expression allows one to find by recursion the needed order of large-N expansion.

The expressions agree with the direct NLO large-N calculations.

In particular, we need the ω
(1)
nn value for the GPD consideration. It reads

w(1)
nn =

2

n+ 1

n!n!

(2n)!
, n = odd. (C.1-7)

C.2 On the solution of recursive equations

The recursive equations often appeared in the present thesis. All equations pre-

sented in the thesis have unique solutions. But there is no standard receipt for their

solving. In the present section we show some methods for the investigation of the

recursive equations. The mathematical literature is not voluminous, and it mainly

concentrates on the linear equations, e.g. [52], [78].

First of all, let us consider the linear recursive equations. These equations are

describes many ”daughter” quantities, e.g. the equations for LLog coefficients for FF

(II.4-63), for 6π-amplitude (II.6-93), for the off-leading orders of large-N expansion

(C.1-5). We consider only the general structure of the equations without concretizing

the kernels.

Let us consider a non-homogenous linear equation of the form

vn =
1

n

n−1∑
i=0

Zn−ivi +Bn, (C.2-8)

where Zn−i and Bn are known functions, v0 = 1. This is a typical form of equation

which appears in applications.

The solution of eqn. (C.2-8) is unique, since it is the infinite system of linear

equations with a triangle matrix. It can be transformed to the integral Volterra

equation of the second kind on the generating function

Υ(x)−Υ(0) =

∫ x

0

Υ(y)W (y) dy +B(x) , (C.2-9)

where

Υ(x) =
∞∑
n=0

vnx
n , W (x) =

∞∑
n=1

xn−1Zn , B(x) =
∞∑
n=0

Bnx
n.

The boundary conditions is Υ(0) = v0. The general solution of eqn. (C.2-9) is
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following

Υ(x) = exp
[ ∫ x

0

W (y) dy
][
Υ(0) +

∫ x

0

B′(y) exp
(
−
∫ y

0

W (z) dz
)
dy
]
,(C.2-10)

where B′ = d
dx
B(x).

In the particular case, when the kernel is a number, Zn = a, the expression

(C.2-10) gives the generating function

Υ(x) =
1

(1− x)a

[
Υ(0) +

∫ x

0

B′(y)(1− y)ady
]
.

Thus, the expression for vn is

vn = v0
(a)n
n!

+Bn+
n−1∑
k=1

Bk
Γ (n− k + a)

(n− k)!Γ(a) 3F2

(
{−a, k, k−n}, {k+1, k−n−a+1}, 1

)
.

For values a = 1, 2 it reads

a = 1 : vn = v0 +Bn +
n−1∑
k=1

Bk

k + 1
,

a = 2 : vn = (n+ 1)v0 +Bn +
n−1∑
k=1

Bk
2(n+ 1)

k2 + 3k + 2
.

Usually, one does not need to obtain the expression for vn explicitly, because the

generation function is more useful for the physical application.

Also the following recursive equation is interesting

vn =
λn
n

n−1∑
i=0

Zn−ivi +Bn,

the corresponded integral equation is

Υ(x)−Υ(0) =

∫ x

0

Υ(y)W(x, y)dy +B(x)

where

Υ(x) =
∞∑
n=0

vnx
n , W(x, y) =W (y)

∫ x

y

dz

z
λ

(
z

y

)
, B(x) =

∞∑
n=0

Bnx
n,

W (x) =
∞∑
n=1

xn−1Zn ,

∫ 1

0

xn−1λ(x) = λn.

This equation has no general solution for an arbitrary kernel, hence it has to be

considered for every case separately.



124

In the cases when the auxiliary indices are presented the addition variable in the

generating function has to be introduced. The example of such calculation can be

found in the text, (III.1-14).

The recursive equations with quadratic non-linearity, e.g.(II.3-36), also can be

expressed as an integral equation for generating functions. Schematically the usual

recursive equation has the form

ωn =
λn
n− 1

n−1∑
i=1

ωiωn−i. (C.2-11)

The integral analog of this equation is a Volterra equation of the second kind in form

of Hammerstein:

f(x)− f(0) =
∫ x

0

g
(y
x

)
f2(y)dy, (C.2-12)

where

f(x) =
∞∑
n=1

xn−1ωn , f(0) = ω1 , λn =

∫ 1

0

g(y)yn−2dy.

The Hammerstain equation has an unique solution. In some particular cases this

equation is exactly solvable [53].

Since we can not present the general solution of eqn. (C.2-12), let us discuss the

asymptotic properties of the solution. We do not have an unambiguous result for the

asymptotic behavior. The non-linearity of the equation provides many uncontrol-

lable effects. However, we present here some attempts to investigate the asymptotic

behavior of the generating function and coefficients ωn.

Let us suppose that the β-function has a weak dependence on n. Thus, one can

approximate it as λn = β + δ
2
n. In this case the solution can be found in terms of

the inverse function, and it has the form

x =
f

β
β+δ − 1

βf
,

which gives

f(x) =
1

1− βx
− δ

β

ln(1− βx)
(1− βx)2

(C.2-13)

+
δ2

2β2

ln(1− βx)
(1− βx)3

(
(1 + βx) ln(1− βx)− 2xβ

)
+O

((
δ

β

)3
)
.

The first term represents the usual renormalizable solution. All others give the non-

renormalizable corrections.



On the solution of recursive equations 125

From this example we can conclude that the solution for the whole equation can

be written in a form

f(x) ∼ 1

(1− βx)

(
1 +

1

(1− βx)1+ϵ
+ ..

)
, for λn − λn−1 ∼ ϵ≪ 1.

This estimation is also supported by the following consideration. Instead of an

integral equation one can write a high order differential equation for the generating

function f(x). Expanding λn in Tailor series at the point n = 1, λn =
∑

k(n −
1)kbk/k!, we obtain the equation

xf ′ =
∞∑
k=0

bk(x∂x)
k
[
xf 2
]
. (C.2-14)

This is a homogenous equation with the power of homogeneity equal (−1). Thus,

the expected solution should have a form of f ∼ (1 − βx)−1 and some addition

”dimensionless” x-dependence. In the case then bk = ϵkb̃k, where ϵ≪ 1, the solution

can be presented as an expansion in ϵ,

f =
1

1− b0x
− ε b̃1b0x+ 2 ln(1− b0x)

b0(1− b0x)2
+O(ϵ) .

At large x the leading terms in such expansion behave as cn
xn−1

(1−b0x)n . The coefficients

cn can be found explicitly. Skipping the details we obtain

f(x) =
1

1− b0x

(
1+

∞∑
k=1

bk
b0

( b0x

1− b0x

)k)−1
+O(x−2+ϵ) = 1

1− λ1x
λ1

λ 1
1−b0x

+O(x−2+ϵ).

This expression gives an asymptotic behavior of the solution at large x for non-

growing λn.

The more interested object of investigation is the asymptotic behavior of ωn at

large-n. It is given by the nearest to origin singularity of the generating function,

e.g. see [79]. Since eqn. (C.2-14) is homogenous, the singularity of solution can be

only a simple pole. Therefore, the asymptotic behavior is just

ωn ∼ an−1, (C.2-15)

where a is an inverse distance from zero to the pole. This number can be found using

the Kovalevsky method. But the movement of the pole positions is very difficult for

any more or less real β-function. Therefore, the task to find value a is still unsolved.

The value of a can be found when the n-dependence of λn is weak. In this case

a = λ1. We have already seen this result in the large-N expansion and in eqn.

(C.2-13). This estimation also agrees with numerical calculations.
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In the opposite case, when the λn is a fast increasing function of n, like λn & n∆n

and ∆≫ 1, the leading behavior of ωn is

ωn =
2n−1

(n− 1)!

n∏
i=2

λi
(
1 +O(∆−1)

)
.

We see that such behavior is of an absolutely another type than (C.2-15).
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The unitarity relation in

D-dimension

In this appendix we give a summary of definitions and relations for the partial wave

decomposition, in the arbitrary even space-time dimension D.

The S matrix element in D dimensions is defined as:

⟨ϕd(p4)ϕc(p3)|S|ϕb(p2)ϕa(p1)⟩ = (D.1-1)

= Iabcdp1p2p3p4
+ i(2π)DδD(p1 + p2 + p3 + p4)

∑
I

P abcd
I TI(s, t, u),

where P abcd
I is the projector on the invariant subspace of the particle symmetry group

(see a proper definition after (III.2-19)), T I is the scattering amplitude. The first

term corresponds to the identity part of the S matrix:

Iabcdp1p2p3p4
= (2π)2D−2 2p10 2p20 δ

acδbdδD−1(p⃗1 − p⃗3)δD−1(p⃗2 − p⃗4),

where we have assumed that particles ϕ are commuting, i.e. |ϕa(p1)ϕb(p2)⟩ =

|ϕb(p2)ϕa(p1)⟩.
The unity in the space of fields ϕ has the form

I =
∞∑
n=1

n∏
i=1

∑
ai

∫
dD−1pi

2pi0(2π)D−1
|ϕan(pn)..ϕa1(p1)⟩⟨ϕa1(p1)..ϕan(pn)|.

Omitting the multi-particle states, and using the unitarity of S matrix, SS+ = I,
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one obtains the elastic unitarity relation in the momentum space

Im
∑
I

P abcd
I T I(p1, p2, p3, p4) (D.1-2)

=
1

2(2π)D−2

∑
I,J

P abαβ
I P βαcd

J

∫
dDqδ((q + p1)

2)δ((q − p2)2) ·

T I(p1, p2, p1 + q, p2 − q)T ∗J(p2 − q, p1 + q, p3, p4)

=
s

D−4
2

2D+1(2π)D−2

∑
I

∫
dΩP abcd

I T I(s, η1)T
∗I(s, η2),

where the orthogonality relation of projectors (III.2-20) was used. Here η1,2 are

cosines of scattering angles in c.m.s., ηi = 1 + 2ti
si
. The integration over spherical

coordinates goes over (D − 2) angles, i.e.

dΩ = sinD−3 θ sinD−4 φ1 ... sinφD−2 dθdφ1..dφD−3.

The cosines η1,2 and η are related to each other by the simple trigonometrical ex-

pression, η2 = ηη1 +
√

(1− η2)(1− η21) cosφ1.

The partial waves in the D dimensions are defined as

T I(s, t) = 64π
∞∑
l=0

2l +D − 3

2

Γ
(
D−3
2

)
√
π

C
D−3
2

l (η)tIl (s) (D.1-3)

tIl (s) =
1

64π

∫ 1

−1
(1− η2)

D−4
2

Γ
(
D−3
2

)
√
π

2D−4l!

Γ(l +D − 3)
T I(s, t)C

D−3
2

l (η)dη,

where Cν
l (z) are Gegenbauer polynomials. At D = 4 this decomposition turns to the

usual partial wave decomposition (III.1-7). Using the connection between η1 and η2

one can integrate out the φ1-dependence in eqn. (D.1-2) with the help of the sum

theorem for Gegenbauer polynomials∫ π

0

C
D−3
2

l (ηη1 +
√

(1− η2)(1− η21) cosφ) sinD−4 φdφ

= 2D−4
l!Γ2

(
D−3
2

)
Γ(l +D − 3)

C
D−3
2

l (η)C
D−3
2

l (η1).

The integral over η1 recalls the Gegenbauer orthogonality relation, and the integral

over the residually angles gives the volume of SD−1/SD−4. Collecting all together

one obtains the diagonal in l equation:

ImtIl (s) = π
D−4
2

(
s

(4π)2

)D−4
2

|tIl (s)|2 +O(Inelastic part) (D.1-4)
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The analytic continuation of the unitarity relation to the s < 0 area can be

obtained using the dispersion relation. At the two-particles intermediate state ap-

proximation, the analytical properties of the amplitude inD dimensions are the same

as in D = 4 case, namely the amplitude has the s-channel cut from 4m2 to +∞, and

the u-channel cut from −∞ to 0. We have to switch on the masses in order to avoid

the problems with the coalescing of branch points. The simple dispersion relation at

fixed t with no subtractions can be presented in the form, e.g. [58],

T I(s, t) =
1

π

∫ ∞
4m2

ds′

(
δII

′

s′ − s
+

CII′
su

s′ − 4m2 + t+ s

)
ImT I

′
(s′, t), (D.1-5)

where the matrix Csu is the crossing matrix building up from projectors PI , (III.2-

25). To be sure that the dispersion relation converges one should make subtractions.

But the subtractions do not influence the imaginary part of the amplitude, and we

omit them. The discontinuity over the left-hand cut (s < 0) is given only by the

second term in the brackets (D.1-5). In the partial waves basis (D.1-3) it reads

Im tIl (s) =
∞∑
l′=0

CII′

su

2D−3(2l′ +D − 3)

Γ(l +D − 3)

Γ2
(
D−3
2

)
π

l!

∫ 4m2−s

4m2

ds′

s− 4m2
· (D.1-6)

[4s′(4m2 − s− s′)
(s− 4m2)2

]D−4
2
C

D−3
2

l

(s+ 2s′ − 4m2

4m2 − s

)
C

D−3
2

l′

(2s+ s′ − 4m2

4m2 − s′
)
Im tI

′

l′ (s
′).

Taking the limit m2 → 0 one obtains the expression

Im tIl (s) =
∞∑
l′=0

CII′

su

2D−3(2l′ +D − 3)

Γ(l +D − 3)

Γ2
(
D−3
2

)
π

l!

∫ −s
0

ds′

s
(D.1-7)

×
[
−4s

′

s

(
1 +

s′

s

)]D−4
2

C
D−3
2

l

(s+ 2s′

−s

)
C

D−3
2

l′

(2s+ s′

−s′
)
Im tI

′

l′ (s
′).

In D = 4 limit this relation was found for the case of ππ=scattering amplitude in

[22] as a consequence of the Roy equation. It has the form

Im tIl (s) =
∞∑
l′=0

CII′

su

2(2l′ + 1)

s

∫ −s
0

ds′ Pl

(s+ 2s′

−s

)
Pl′
(2s+ s′

−s′
)
Im tI

′

l′ (s
′). (D.1-8)

It is more convenient to rewrite the relation (D.1-7) through the integration over
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the scattering angle:

Im tIl (s) = −
∞∑
l′=0

CII′

su

(2l′ +D − 3)

Γ(l +D − 3)

Γ2
(
D−3
2

)
π

2D−4l! (D.1-9)

×
∫ 1

−1
dη (1− η2)

D−4
2 (−1)l+l′C

D−3
2

l (η)C
D−3
2

l′

(η + 3

η − 1

)
Im tI

′

l′

(s
2
(η − 1)

)
.
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