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I. DEFINITION

This is copy-paste from [IS& AV,1706.01473].

See references and refereed equations within it.

In the construction of the cross section, one finds several sources of perturbative uncertainties. The size of these
uncertanties can be estimated by the variation of associated scales. We list here the ones that we have considered in
the present work.

• Uncertainty associated with the perturbative matching of rapidity anomalous dimension : This uncertainty arises
from the dependence (at the fixed perturbative order) on µ0, which should be compensated between the Sudakov
factor and the boundary term D(µ0) in the TMD evolution factor eq. (??). This uncertainty can be tested by
changing µ0 → c1µ0 and varying c1 ∈ [0.5, 2].

• Uncertainty associated with the hard factorization scale: This uncertainty arises from the dependence (at the
fixed perturbative order) on the scale µf (∼ Q) which is to be compensated between the hard coefficient function
|CV |2 and the TMD evolution factor. This uncertainty can be tested by changing µf → c2µf and varying
c2 ∈ [0.5, 2].

• Uncertainty associated with the TMD evolution factor: This uncertainty arises from the dependence (at the fixed
perturbative order) on initial scale of TMD evolution µi, which is to be compensated between the evolution
integral and the µ-dependence of ζi in eq. (??). This uncertainty can be tested by changing µi → c3µi and
varying c3 ∈ [0.5, 2].

• Uncertainty associated with the small-b matching: This uncertainty arises from the dependence (at the fixed
perturbative order) on the scale of the small-b matching µOPE which is to be compensated between the small-b
coefficient function Cf←f ′ and evolution of PDF. This uncertainty can be tested by changing µOPE → c4µOPE

and varying c4 ∈ [0.5, 2].

We remark that our definition of perturbative uncertainties c1,2 is commonly used in the literature (as far as it
can be compared among different schemes of calculation), see e.g. [? ? ]. The uncertainties c3,4 are usually non
distinguished and they are commonly varied simultaneously i.e. in the literature one finds discussions of errors for
the case c4 = c3. To our best knowledge, the distinction of the matching and evolution uncertainties is made here for
the first time.

In this way, the general expression for the cross-section in eq. (??) with our choice of scales reads
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where the evolution factor R is given in eq. (??) and the explicit expression for the ζµ is given in eq. (??). The
low-normalization point µi and the scale of small-b operator product expansion µOPE are fixed at the same point (??)

µi = µOPE =
C0

b
+ 2 GeV. (1.2)

The central value of the constants c1,2,3,4 is 1 and they are varied in order to estimate the theoretical uncertainties in
the usual range (0.5, 2).

The perturbative orders of each constituent are to be combined consistently. Having at our disposal the NNLO
expressions for coefficient function and N3LO expressions for anomalous dimensions, we can define four successive
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Name |CV |2 Cf←f ′ Γ γV D PDF set as(run) ζµ

NLL/LO a0s a0s a2s a1s a2s nlo nlo NLL

NLL/NLO a1s a1s a2s a1s a2s nlo nlo NLO

NNLL/NLO a1s a1s a3s a2s a3s nlo nlo NNLL

NNLL/NNLO a2s a2s a3s a2s a3s nnlo nnlo NNLO

TABLE I: The perturbative orders studied in the fit. For each order we indicate the power of as of each piece that enters in
the TMDs. Note, that the order of as and PDF set are related, since the values of as are taken from the PDF set.

self-contained sets of ordering. This is reported in table I. In our definition of orders we use the following logic: (i)
The order of the as-running should be the same as the order of PDF set, since their extraction are correlated. (ii)
The order of D should be the same as the order of Γ since they enter the evolution kernel R with the same counting of
logarithms (i.e. ans lnn+1 µ), and one-order higher then the order of γV , since it has counting ans lnn µ. (iii) The order
of small-b matching coefficient should be the same as the order of evolution of a PDF, because large logarithms of b
are to be compensated by the PDF evolution. (iv) The order of ζµ should be such that no logarithms appear in the
coefficient function, and the general logarithm counting coincides with the counting of the evolution factor. In table
I the order of the ζµ is defined as following: NLL is lζ = Lµ/2, NLO has in addition finite part at order a0s (i.e. two
first terms of eq. (??)), NNLL has in addition logarithmic part at order a1s (i.e. the first line of eq. (??)), and NNLO
is given by whole expression eq. (??).

To label the orders we use the nomenclature where the part with ’LO suffix designates the order of coefficient
functions, and the part with ’LL suffix designates the order of the evolution factor in the as lnµ ∼ 1 scheme. So, our
highest order is NNLL/NNLO, which at the moment the highest available combination of the perturbative series.

End of copy-paste.

In the following in order to estimate the pertubative uncertainty consider variations ∆i such that ci ∈ [0.5, 2], ci 6=j =
1. I find the maximum and minimum deviation from the central value (ci = 1)

∆σmax =
max{dσ(∆i)}
dσ(central)

, ∆σmin =
min{dσ(∆i)}
dσ(central)

. (1.3)

Naturally, ∆σ depends on (xA,B , Q, pT ) for Drell-Yan and (x, z, Q and pT ) for SIDIS, and on the values of fNP . We
fix the following

• ∆σ strongly depends on pT , see [1706.01473] for multiple plots. It has some platoe in the vicinity of peak of
cross-section, and grows in both direction pT → 0 and pT → Q. The pT → Q growing is typically started
at pT ∼ 0.25Q and is beyond TMD factorization region. The region and amount of growing at pT → 0 is
dependent on energy, for obvious reasons. To set some estimator for error, we choose pT at the peak
of cross-section, i.e. at the maximum of pT dσ/dpT (central value).

• The value of uncertainty should not strongly depend on the fNP , as far as, it roughly represents the data.
(However, for faster asymptotic error could be a bit slower). However, note that the position of the peak
is dependent on fNP which induce extra dependence. For Drell-Yan we use the functions fNP from the fit
[1706.01473] (model 1). For SIDIS we use the same input as for Drell-Yan, since there is no yet fit for this data.

• Naturally, there is dependence on the process. However, it is not essential for general picture. For Drell-Yan
type of process we set p+ p̄→ Z/γ∗ +X (without fiducial cuts). For SIDIS we set p+ γ∗ → p+ +X (without
fiducial cuts).

• We took the exact differential cross-section (i.e. no kinematic integrations).

The following notes could be interesting

• The pT → 0 growing is due to large logarithms of b at b → ∞. IMPORTANT NOTE: ζ-prescription is
specially tuned to minimize/eliminate these logarithms, and thus growing is not significant (especially in the
lower-energy). In other schemes, this could represent serious problem, due to uncompensated double-logarithms
in the PT-tail of TMD evolution. In fact, I expect (I also checked it but it was year ago, so could not guaranty)
that in non-ζ-prescriptions, the PT uncertainty c3,4 could grow with the increase of the order. At least I
guaranty, that in non-ζ-prescriptions, PT uncertainty would not go down as fast as in ζ-prescription.
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• The experimental data is always integrated over kinematics, which smooths the uncertainties.

• The selection of µ’s does not significantly change the uncertainty band (by definition). However, in the asymp-
totic regimes (especially b→∞) there could be strong dependence, because ciµ could be very close to Landau
pole. E.g. in (1.2) we specially set Q0 = 2 GeV, to ensure that it does not enter ”close-to-Landau-pole” region
during variations.

• I did not evaluate the value of the peak presicely but within ±1−2%. Therefore, some funny numerical artifacts
could appear.

• The constants c3 and c4 are often not distinguished. Also there is possibility to distinguish c3 and c4 within
separate TMDs, which we do not use.

There are following errors in the implementation

• The main error comes from the absence of the fit for SIDIS. Thus the peak position is determined using wrong
fNP and could be easily off the data completely. But I hope that the general picture is clear.

• The PDFs and FFs (and αs) must be take at appropriate evolution order to make possible perturbative cancel-
lations. However, there is no LO sets for PDFs, which is not a problem since main error at LO comes from c2).
For FF the situation is worse. I use DSS15 input, which is at NLO only.

• While the Drell-Yan part of the arTeMiDe has been tested very well, the SIDIS part has not been tested so well.
Thus, there are possible bugs in the code. I am working on it.

• There is a hidden error in the implementation of ζ-prescription at NNLO (related to non-analytical behavior
of evolution field at certain points). However, it is important only at high energy and (I hope) could not give
significant effect (but it could reduce by error band by ∼ 1% at Z-boson). I will fix it eventually. It requires
some calculations.

REMEMBER: ∆σ depends on pT . The value at peak can be affected by some accidental numerics and by
fNP . Thus the plot presented below should not be considered as an absolute criterion. However, in common,
it gives a taste of what-is-going-on. Probably, some integrated characteristic is better.
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II. DRELL-YAN

NLL/LO

NNLL/NLO

N
3LL/NNLO

Δσ

Q[GeV]

x=0.0115

1 5 10 50 100

-0.6

-0.4

-0.2

0.2

0.4

0.6

NLL/LO

NNLL/NLO

N
3LL/NNLO

Δσ

Q[GeV]

x=0.05

1 5 10 50 100

-0.6

-0.4

-0.2

0.2

0.4

0.6

NLL/LO

NNLL/NLO

N
3LL/NNLO

Δσ

Q[GeV]

x=0.2

1 5 10 50 100

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

FIG. 1: ∆σ for Drell-Yan process at fixed x and fixed y = 0 and different values of Q. x = 0.0115 roughly corresponds to LHC
kinematics at Z-boson peak. x = 0.05 roughly corresponds to TeVatron kinematics at Z-boson peak. x = 0.2 typical x for E288
experiment.
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FIG. 2: ∆σ for Drell-Yan process at fixed s and Q and different values of y (therefore, it scans ranges of x). The values
of y varies from maximal to minimal allowed (utmost points excluded, since cross-section is zero). Upper plot at TeVatron
kinematics at Z-boson peak (experimental error ∼ 2%). Lower plot is for one entry of E288 experiment (experimental error
∼ 5%).
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FIG. 3: ∆σ for Drell-Yan process at different values of x and Q (y = 0). The values of x varies from 0.01 to 0.9.
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III. SIDIS
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FIG. 4: ∆σ for SIDIS process at fixed x and fixed z and different values of Q. (x, z) = (0.1, 0.4) presented in some HERMES bins.
(x, z) = (0.01, 0.3) and (x, z) = (0.05, 0.5) presented in some COMPASS bins. IMPORTANT: By darker color represented
the part of cross-section where the peak is awya of the TMD factorization region (which we roughly estimate as pT < 0.2zQ).
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FIG. 5: ∆σ for SIDIS process at fixed x and fixed Q and different values of z ∈ (0.1, 0.9). (Q2, x) = (9.92, 0.41) represent the
highest bin in HERMES. (Q2, x) = (8, 0.055) represent the highest bin in COMPASS (IMPORTANT: Since I do not have a
proper fit of fNP this is highly incorrect picture). (Q2, x) = (400, 0.1) and (x, z) = (0.05, 0.5) represent some nice experiment.
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FIG. 6: ∆σ for SIDIS process at different values of x and z (Q = 8GeV). The values of x varies from 0.01 to 0.9, values of z
varies in (0.1,0.9).


