Description of unpolarized Drell－Yan and SIDIS processes within TMD factorization

Alexey Vladimirov

Regensburg University

Introduction

> I present the joined fit of the DY and SIDIS data and the extraction non-perturbative TMD distributions

Main messages:

- Joined description of DY and SIDIS is consistent and does not meet any problem
- We do not see any tension between HERMES and COMPASS SIDIS data
- TMD non-perturbative evolution is universal

TMD factorization formula (in ζ-prescription)

- Each data-point is a product (convolution) of three independent non-perturbative functions
- Functions do not "cross-talk" and could be modeled independently
- Each function is responsible for a separate kinematic variable
- Rapidity AD: $\mathcal{D} \rightarrow Q$ and b
- TMD PDF: $F \rightarrow x$ and b
- TMD FF: $\quad D \quad \rightarrow \quad z$ and b

Hard part and TMD evolution

NNLO \& $\mathrm{N}^{3} \mathrm{LO}$

Model for RAD

$$
\mathcal{D}(b, \mu)=-\frac{K(b, \mu)}{2}=\underbrace{\mathcal{D}_{\text {pert }}\left(b^{*}(b), \mu\right)}_{\begin{array}{c}
\text { NNLO \& N } \\
\text { resumbed }{ }^{3} \mathrm{LO}
\end{array}}+c_{0} b \cdot b^{*}(b), \quad b^{*}=b\left(1+b^{2} / B_{N P}^{2}\right)^{-1 / 2}
$$

Model for (optimal) TMD distribution

$$
F(x, b)=\underbrace{C(x, b) \otimes f_{1}(x)}_{\text {NNLO } \& \mathrm{~N}^{3} \mathrm{LO}} f_{N P}(x, b)
$$

Resummation equivalent: NNLL' \& $\mathbf{N}^{3} \mathbf{L L}(?)$

In ζ-prescription: $\mu \sim Q$
Matching scales $\mu_{\text {OPE }}$ are intrinsic for each function

Difference between NNLO and $\mathrm{N}^{3} \mathrm{LO}$ is not that important

Fit strategy and the test of universality

Universitãt Regensburg

Fit strategy and the test of universality

Universitãt Regensburg

Fit strategy and the test of universality

Universitãt Regensburg

Check of universality

Universitãt Regensburg

Check of universality

Check of universality

Check of universality

There are plenty of details/questions

- How to cut the data?
- Where is the limit of TMD factorization?
- Power corrections:
\checkmark Induced (ATLAS, LHCb) (linear in q_{T} ?)
- Kinematic
- In the definition of collinear frame
- Target mass and produced mass
- Universality and correlations
- ... many others ...
- What do we learn from it?

Test by inclusion of the data with

$$
q_{T}<\delta \cdot Q
$$

unpolarized DY

[I.Scimemi, $\dot{A} V, 1706.01473$]
unpolarized SIDIS

$\begin{array}{llll}8 & 16 & 24 & 32\end{array}$
Universităt Regensburg

TMD factorization for SIDIS

Proof of factorization is done in the Breit frame

$$
\begin{aligned}
& \text { Breit frame } \\
& q_{T}^{2}=\frac{p_{T}^{2}}{z^{2}} \frac{1+\gamma^{2}}{1-\varsigma^{2}} \\
& x_{1}=-x \frac{2}{\gamma^{2}}\left(1-\sqrt{1+\gamma^{2}\left(1-\frac{\mathbf{q}_{T}^{2}}{Q^{2}}\right)}\right), \quad z_{1}=z \frac{x_{1}}{x} \frac{1+\sqrt{1-\varsigma^{2}}}{2\left(1-\frac{\mathbf{q}_{T}^{2}}{Q^{2}}\right)} \\
& \text { Lab frame } \\
& \gamma=\frac{2 M x}{Q} \\
& \varsigma=\gamma \frac{m}{z Q}
\end{aligned}
$$

In practice: $q_{T}<0.25 Q$

- Most part of data is not TMD factorisable.
- Low z 's are not accessible
- H1, ZEUS data have no TMD points, too low z.

Test of importance of power correction

These are not all power corrections, but only those that we know how to account

include (m / Q)	yes	no	yes	yes	no	no
include (M / Q)	yes	yes	no	yes	no	no
include $\left(q_{T} / Q\right)$ in kinematics	yes	yes	yes	no	no	no
include $\left(q_{T} / Q\right)$ in x_{S}, z_{S}	yes	yes	yes	yes	yes	no
$\chi^{2} / N_{p t}$	1.00	1.00	1.09	1.06	1.16	1.31

Most important corrections are $\frac{M}{Q}$ and $\frac{q_{T}}{Q}$ from the rotation Breit \rightarrow Lab

Universitãt Regensburg

Data survived after the cut

Universitãt Regensburg

Example of SIDIS data No contradiction between HERMES and COMPASS

Universităt Regensburg

Example of low-energy DY Some problem with normalization Large-x, nuclear corrections,...

$+15 \%$

LHC data within TMD factorization

Evolution : 2 parameters TMDPDF : 5 parameters + PDF TMDFF : 4 parameters + NNFF

Different NP functions are almost decorrelated

$$
\begin{aligned}
f_{N P}(x, b) & =\exp \left(-\frac{\lambda_{1}(1-x)+\lambda_{2} x+x(1-x) \lambda_{5}}{\sqrt{1+\lambda_{3} x^{\lambda_{4}} \boldsymbol{b}^{2}}} \boldsymbol{b}^{2}\right), \\
D_{N P}(x, b) & =\exp \left(-\frac{\eta_{1} z+\eta_{2}(1-z)}{\sqrt{1+\eta_{3}(\boldsymbol{b} / z)^{2}}} \frac{\boldsymbol{b}^{2}}{z^{2}}\right)\left(1+\eta_{4} \frac{\boldsymbol{b}^{2}}{z^{2}}\right),
\end{aligned}
$$

> Evolution : 2 parameters TMDPDF : 5 parameters + PDF TMDFF : 4 parameters + NNFF

Different NP functions are almost decorrelated

Fit quality essentially depends on the collinear input.

Vary NNPDF within the 1σ band

$$
\chi^{2} / N_{p t} \in[0.8,6 .]
$$

We cannot estimate accurately the PDF uncertainty.

$$
F(x, b)=C\left(x, b, \mu_{O P E}\right) \otimes \underbrace{f_{1}\left(x, \mu_{O P E}\right)}_{ \pm \delta f(\text { reweighted })} \underbrace{f_{N P}(x, b)}_{ \pm \delta f_{N P}}
$$

$$
F(x, b)=C\left(x, b, \mu_{O P E}\right) \otimes \underbrace{f_{1}\left(x, \mu_{O P E}\right)}_{ \pm \delta f(\text { reweighted })} \underbrace{f_{N P}(x, b)}_{ \pm \delta f_{N P}}
$$

s-quark $x=0.5$

Universitãt Regensburg
unpolarized TMD-distributions

Universal TMD evolution kernel

$$
\mathcal{D}_{\mathrm{NP}}(b, \mu)=\mathcal{D}_{\mathrm{perp}}\left(b^{*}, \mu\right)+c_{0} b b^{*}, \quad b^{*}=b / \sqrt{1+b^{2} / B_{N P^{2}}}
$$

- Linear asymptotic at $b \rightarrow \infty$ (ed.assumption)
- RAD is independent on PDF set

Universal TMD evolution kernel Comparison

Universitãt Regensburg

TMD factorization is consistent and universal approach

- Large bulk of data DY + SIDIS described by same TMD distribution ($+\pi \mathrm{DY}$)
- Extracted NP-functions are (almost) uncorrelated
- Previous estimation of limits for TMD factorization confirmed $q_{T} / Q<0.25$
- Perfect perturbative stability
- Target mass corrections and proper definition of the kinematic variables helps
- Strong sensitivity to collinear input (restriction to PDFs?)
- Definite model bias
- Lack external information on distributions (models,lattice,...)

$$
\text { artemide v2.02 } \rightarrow \mathrm{v} 2.03 \text { (soon) }
$$

https://github.com/VladimirovAlexey/artemide-public

- Bug fixing
- Growing functionality: DY, SIDIS, different in/out-states
- New tools to estimate uncertainties.

