Description of unpolarized Drell-Yan and SIDIS processes within TMD factorization

Alexey Vladimirov

・ロト ・四ト ・ヨト ・ヨト

臣

I present the joined fit of the DY and SIDIS data and the extraction non-perturbative TMD distributions

Main messages:

- ▶ Joined description of DY and SIDIS is consistent and does not meet any problem
- \blacktriangleright We do not see any tension between HERMES and COMPASS SIDIS data
- ▶ TMD non-perturbative evolution is universal

TMD factorization formula (in ζ -prescription)

▶ Rapidity AD: $\mathcal{D} \rightarrow Q$ and b ▶ TMD PDF: $F \rightarrow x$ and b

▶ TMD FF: $D \rightarrow z$ and b

A.Vladimirov

artemide

February 2, 2020 3 / 21

イロン イヨン イヨン イヨン

rsität Regensburg

Theory input

Hard part and TMD evolution

NNLO & N³LO

Model for RAD

Fit strategy and the test of universality

A.Vladimirov

February 2, 2020 6 / 21

Fit strategy and the test of universality

æ

Universität Regensburg

イロト イヨト イヨト イヨト

Fit strategy and the test of universality

A.Vladimirov

artemid

February 2, 2020 7 / 21

There are plenty of details/questions

- ▶ How to cut the data?
- ▶ Where is the limit of TMD factorization?
- Power corrections:
 - ▶ Induced (ATLAS, LHCb) (linear in q_T ?)
 - ▶ Kinematic
 - ▶ In the definition of collinear frame
 - Target mass and produced mass
- ▶ Universality and correlations
- ▶ ... many others ...
- ▶ What do we learn from it?

TMD factorization for SIDIS

In practice: $q_T < 0.25Q$

- ▶ Most part of data is not TMD factorisable.
- Low z's are not accessible
- ▶ H1, ZEUS data have no TMD points, too low z.

Test of importance of power correction

These are not all power corrections, but only those that we know how to account

include (m/Q)	yes	no	yes	yes	no	no
include (M/Q)	yes	yes	no	yes	no	no
include (q_T/Q) in kinematics	yes	yes	yes	no	no	no
include (q_T/Q) in x_S, z_S	yes	yes	yes	yes	yes	no
χ^2/N_{pt}	1.00	1.00	1.09	1.06	1.16	1.31

Most important corrections are $\frac{M}{Q}$ and $\frac{q_T}{Q}$ from the rotation Breit \rightarrow Lab

Data survived after the cut

A.Vladimirov

February 2, 2020

イロト イヨト イヨト イヨト

æ

February 2, 2020 13 / 21

Universität Regensburg

A.Vladimirov

15 / 21

 $\begin{array}{l} Evolution: \ 2 \ parameters \\ TMDPDF: \ 5 \ parameters + \ PDF \\ TMDFF: \ 4 \ parameters + \ NNFF \end{array}$

Different NP functions are almost decorrelated

$$\begin{split} f_{NP}(x,b) &= \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1+\lambda_3 x^{\lambda_4} b^2}} b^2\right),\\ D_{NP}(x,b) &= \exp\left(-\frac{\eta_1 z + \eta_2(1-z)}{\sqrt{1+\eta_3(b/z)^2}} \frac{b^2}{z^2}\right) \left(1+\eta_4 \frac{b^2}{z^2}\right), \end{split}$$

February 2, 2020 16 / 21

イロト イヨト イヨト イヨト

 $\begin{array}{l} {\rm Evolution: 2 \ parameters} \\ {\rm TMDPDF: 5 \ parameters} + {\rm PDF} \\ {\rm TMDFF: 4 \ parameters} + {\rm NNFF} \end{array}$

Different NP functions are almost decorrelated

Fit quality essentially depends on the collinear input.

Vary NNPDF within the 1σ band

 $\chi^2/N_{pt} \in [0.8, 6.]$

We cannot estimate accurately the PDF uncertainty.

イロト イヨト イヨト イヨト

UR

Universität Regensburg

 $F(x,b) = C(x,b,\mu_{OPE}) \otimes f_1(x,\mu_{OPE}) f_{NP}(x,b)$ $\pm \delta f$ (reweighted) $\pm \delta f_{NP}$

A.Vladimirov

artemide

February 2, 2020 17 / 21

 $F(x,b) = C(x,b,\mu_{OPE}) \otimes f_1(x,\mu_{OPE}) f_{NP}(x,b)$ $\pm \delta f$ (reweighted) $\pm \delta f_{NP}$

A.Vladimirov

artemide

February 2, 2020 17 / 21

unpolarized TMD-distributions

Universal TMD evolution kernel

Universal TMD evolution kernel Comparison

Conclusion

TMD factorization is consistent and universal approach

- ▶ Large bulk of data DY+SIDIS described by same TMD distribution $(+\pi DY)$
- ▶ Extracted NP-functions are (almost) uncorrelated
- ▶ Previous estimation of limits for TMD factorization confirmed $q_T/Q < 0.25$
- Perfect perturbative stability
- ▶ Target mass corrections and proper definition of the kinematic variables helps
- Strong sensitivity to collinear input (restriction to PDFs?)
- ▶ Definite model bias
- ▶ Lack external information on distributions (models, lattice,...)

artemide $v2.02 \rightarrow v2.03$ (soon)

https://github.com/VladimirovAlexey/artemide-public

- ▶ Bug fixing
- ▶ Growing functionality: DY, SIDIS, different in/out-states
- ▶ New tools to estimate uncertainties.