Extraction of TMD distributions: status and plans

Alexey Vladimirov

イロト イヨト イヨト イヨ

RT

Project P4.a

Semi-inclusive reactions in TMD factorization theorems

- (i) Global analysis of unpolarized SIDIS data
- (ii) NLO analysis of single-spin asymmetry

Plan of the talk

- ▶ structure of TMD factorization
- general strategy of extraction of TMDs
- ▶ DY and unpolarized TMDPDF
- ▶ non-perturbative TMD evolution
- \blacktriangleright joined fit SIDIS+DY
- ▶ future plans

A.Vladimirov

(日) (四) (三) (三) (三)

There many TMD distributions, but (honestly) we know very little about them.

Transverse momentum distributions of leading order

q N	U	L	Т
U	f ₁		h_1^{\perp} -
L		g ₁	h_{1L}^{\perp}
Т	f _{1T}	g _{1T}	$h_1 h_{1T}^{\perp}$

- + 8 gluon TMDs
- + 2 (or 8) TMD fragmentation function
- + non-perturbative evolution kernel

There are plenty of TMD fit, but all of them outdated

- (not always) inconsistent TMD evolution
- ▶ (often) no perturbative matching

・ロン ・日ン ・ヨン・

▶ fits are disconnected

All TMDs are correlated

Each TMD factorized cross-section has three NP functions

$$\frac{d\sigma}{dp_T^2 dQ} \simeq \sigma_0(Q) \int d^2 \mathbf{b} e^{i\mathbf{b}\mathbf{p}_T} \left(\frac{Q^2}{\zeta_Q(b)}\right)^{-2\mathcal{D}(Q,b)} F_1(x_1,\mathbf{b}) F_2(x_2,\mathbf{b})$$

- ▶ Two TMD distributions $F_1 \& F_2$
- ▶ non-perturbative evolution \mathcal{D}

- ▶ unpolarized TMDFF (F_1)
- ▶ TMDs for SSA $(F_{1T}^{\perp}, D_1^{\perp})$
- **>** ...
- consistent framework for predictions and analysis

イロト イヨト イヨト イヨ

R-T

- ▶ unpolarized TMDFF (F_1)
- ▶ TMDs for SSA $(F_{1T}^{\perp}, D_1^{\perp})$
- ▶ ...
- consistent framework for predictions and analysis

(ロ) (日) (日) (日) (日)

RT

- ▶ unpolarized TMDFF (F_1)
- ▶ TMDs for SSA $(F_{1T}^{\perp}, D_1^{\perp})$
- **>** ..
- consistent framework for predictions and analysis

- ▶ unpolarized TMDFF (F_1)
- ▶ TMDs for SSA $(F_{1T}^{\perp}, D_1^{\perp})$
- **>** ...
- consistent framework for predictions and analysis

- ▶ unpolarized TMDFF (F_1)
- ▶ TMDs for SSA $(F_{1T}^{\perp}, D_1^{\perp})$
- ▶ ...
- consistent framework for predictions and analysis

Theory input

		LO	NLO	NNLO	$N^{3}LO$
	Hard coef.function				
	TMD evolution at $b \to 0$				
	unpol. TMDPDF at $b \to 0$				
5	unpol. TMDFF at $b\to 0$				
vist-	transversity TMDPDF at $b \to 0$				
tv	lin.gluon TMDPDF at $b \to 0$				
	helicity TMDPDF at $b \to 0$				
	Sivers TMDPDF at $b \to 0$				
twist-3	Rest				
:	Collins function, pretzelocity				
_					

・ロト ・日 ・ ・ エ ・ ・ 日 ・ うへの

Stage 1 (DONE!) [V.Bertone, I.Scimemi, AV, 1902.08474]

Stage 1 (DONE!) [V.Bertone, I.Scimemi, AV, 1902.08474]

Unpolarized TMDPDF

Unpolarized TMDPDF

$$f_1(x,b) = \begin{cases} f_1(x) & b = 0\\ C \otimes f_1(x) & b \to 0\\ C \otimes f_1(x) f_{NP}(x,b) & b > 0 \end{cases}$$

Unpolarized TMDPDF

$$f_1(x,b) = \begin{cases} f_1(x) & b = 0\\ C \otimes f_1(x) & b \to 0\\ C \otimes f_1(x) f_{NP}(x,b) & b > 0 \end{cases}$$

▶ HERAPDF20 $\chi^2/N = 0.95$ ▶ HERAPDF20 $\chi^2/N = 0.95(N^3LL)$ ▶ NNPDF3.1 $\chi^2/N = 1.04(N^3LL)$ ▶ NNPDF3.1 $\chi^2/N = 1.17$ ▶ MMHT14 $\chi^2/N = 1.35$ ▶ PDF4LHC_5 $\chi^2/N = 1.56$ ▶ CT14 $\chi^2/N = 1.63$

> TMD factorization be used to restrict PDF uncertainties

> > (ロ) (日) (日) (日) (日)

A.Vladimirov

TMD evolution

October 22, 2019 8 / 18

.

Non-perturbative evolution kernel

Non-perturbative evolution kernel

October 22, 2019 9 / 18 Non-perturbative evolution kernel measures properties of QCD vacuum (but requires model for interpretation)

Non-perturbative definition of RAD

$$\mathcal{D} \sim \frac{\langle 0|F_{+b}S|0\rangle}{\langle 0|S|0\rangle}$$

- ▶ Small-*b* OPE: gluon-correlators with **minimal length connections**
- ▶ Non-Abelian Stokes theorem
- ▶ A path for model calculations (and interpretation)

A.Vladimirov

TMD evolution

Non-perturbative evolution kernel measures properties of QCD vacuum (but requires model for interpretation)

Stochastic Vacuum model

- ▶ The simplest model of QCD vacuum (Wilson-lines **unimportant**)
- ▶ Allows for definition of "confining potential" (linear)

$$V(\mathbf{r}) = \mathbf{r}\frac{\pi}{4}\mathcal{D}''(0) + \frac{\mathcal{D}'(0)}{2} + \frac{\mathbf{r}^2}{2}\int_{\mathbf{r}}^{\infty} d\mathbf{x}\frac{\mathcal{D}'(\mathbf{x})}{\mathbf{x}^2\sqrt{\mathbf{x}^2 - \mathbf{r}^2}}.$$

► "String tension" $\sigma = \frac{\pi}{4} \mathcal{D}''(0) = \frac{\pi}{2} c_0 \simeq 0.05 \pm 0.02 \text{GeV}^2 \text{ vs. } 0.19 \text{GeV}^2$

Extracted non-perturbative rapidity anomalous dimension is universal for all TMDs (except gluon) can be used to extract/analyze/predict other reactions.

lets check

イロト イヨト イヨト イヨ

A.Vladimirov

Pion-induced Drell-Yan [AV,1907.10356]

TMD evolution

イロト イヨト イヨト イヨト

Pion-induced Drell-Yan [AV,1907.10356]

A.Vladimirov

TMD evolution

October 22, 2019 12 / 18

イロト イヨト イヨト イヨ

Pion-induced Drell-Yan [AV,1907.10356]

イロト イヨト イヨト イヨ

IRT→

12 / 18

Stage 2 [I.Scimemi, AV, 2019 (in preparation)]

RT

(ロ) (日) (日) (日) (日)

SIDIS multiplicities are **easily** described by TMD factorization

PDF	FF	χ^2/N_{pt}
NNPDF3.1	DSS14	1.00
NNPDF3.1	JAM19	1.07
HERA20	DSS14	0.77
HERA20	JAM19	0.93
NNPDF3.1	NNFF1.1	6.9

Compare to A.Bacchetta, et al [1703.10157] $\chi^2/N = 1.55 \text{ (NLO/LO/}b^*\text{)}$

・ロト ・回ト ・モト ・モト

SIDIS multiplicities are **easily** described by TMD factorization

	PDF	FF	χ^2/N_{pt}		
-	NNPDF3.1	DSS14	1.00		
	NNPDF3.1	JAM19	1.07		
	HERA20	DSS14	0.77		
	HERA20	JAM19	0.93		
	NNPDF3.1	NNFF1.1	6.9		
Deschatte et al [1702 10157] $\frac{2}{N} = 1.55$ (NLO/L					

Compare to A.Bacchetta, et al [1703.10157] $\chi^2/N = 1.55$ (NLO/LO/b^{*})

Small- χ^2 resulted by COMPASS measurement:

- ▶ Large uncorrelated systematic
- \Rightarrow Smooth lines with (uncorrelated) large-uncertainty.

イロト イヨト イヨト イヨ

HERMES

COMPASS

Work still in progress (error-propagation)

・ロト ・日下・・日下

Conclusion

What is done

- ▶ non-perturbative TMD evolution (NNLO/N³LO)
- unpolarized TMDPDF (proton/pion)
- unpolarized TMDFF (pion/kaon)

Meanwhile...

Unpolarized low- q_T spectrum is under control

- restriction on collinear distributions (join fits?)
- pseudo-data/predictions for on-going/future experiments (artemide)

