Parton distributions with lattice QCD: **how it works.**

> Alexey Vladimirov Regensburg University

Intrinsic hadron structure is (probably) the most complicated topic in the QFT. It is essentially **non-perturbative** (confinement!)

There are several method to study hadrons insides, parton distributions is only one of them, but it is the one which is most well-known and well-explored

Universität Regensburg

Intrinsic hadron structure is (probably) the most complicated topic in the QFT. It is essentially **non-perturbative** (confinement!)

There are several method to study hadrons insides, parton distributions is only one of them, but it is the one which is most well-known and well-explored »»» PDFs, FFs, DAs, TMDs, GPDs, jetF, ... «««

A.Vladimirov

Partons with lattice

October 2, 2020 2/35

All these objects are **artificial**, but they could be obtained from the data by means of **factorization theorems**.

Factorization theorem is a statement of the form:

 $Observable = (perturbative) \times (non-perturbative) + suppressed terms$

$$[\mathbf{Drell, Yan, 70}]$$

$$\begin{bmatrix} \mathbf{d}\sigma \\ \frac{d\sigma}{dQ^2} = \left(\frac{4\pi\alpha^2}{3Q^2}\right) \left(\frac{1}{Q^2}\right) \mathfrak{F}(\tau) = \left(\frac{4\pi\alpha^2}{3Q^2}\right) \left(\frac{1}{Q^2}\right) \int_0^1 dx_1 \int_0^1 dx_2 \delta(x_1 x_2 - \tau) \sum_a \lambda_a^{-2} F_{2a}(x_1) F_{2\overline{a}}'(x_2),$$

$$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

$$[\mathbf{today's arxiv}]$$

$$\frac{d\sigma^c}{dy} = \sigma_{\mathrm{B}}^c(\mu_R^2) \sum_{a,b=q,\overline{q},g} \int_{x_1^0}^1 \frac{dz_1}{z_1} \int_{x_2^0}^1 \frac{dz_2}{z_2} f_a\left(\frac{x_1^0}{z_1}, \mu_F^2\right)$$

$$\times f_b\left(\frac{x_2^0}{z_2}, \mu_F^2\right) \Delta_{d,ab}^c(z_1, z_2, q^2, \mu_F^2, \mu_R^2).$$
(1)

Universität Regensburg

イロト イヨト イヨト イヨト

All these objects are **artificial**, but they could be obtained from the data by means of **factorization theorems**.

Factorization theorem is a statement of the form:

 $Observable = (perturbative) \times (non-perturbative) + suppressed terms$

Collinear factorization

- ▶ Theorem!
- Describes many "1D" observables
- Structure is understood at all levels
- PDFs, DAs, GPDs, FFs

TMD(-like) factorization

- Almost theorem
- Describes (some) 2D observables
- There are holes...
- ► TMDPDFs, TMDFFs

Naive factorization

- ▶ Model assumption
- ► Applied everywhere
- Often works very-well
- ▶ Jets, MC-generators, ...

I will try to explain basics of collinear and TMD factorization ⇒ lattice observables

Part-1: collinear parton distributions on lattice

A.Vladimirov

Partons with lattice

October 2, 2020 4/35

イロト イヨト イヨト イヨ

Note on terminology

Collinear factorization is about asymptotic behavior of operators. The main tool is Operator Product Expansion (OPE) [Wilson,Zimmermann,71] $A_1(x + \xi_1) \dots A_a(x + \xi_a) = \sum_{k=1}^{\infty} f_k(\xi_1, \dots, \xi_a) B_k(x).$

> but in a much wider sense The operators on LHS are generally **non-local**

A.Vladimirov

Partons with lattice

October 2, 2020 5/35

 $Collinear \ factorization \ \longleftrightarrow \ \ light-cone \ OPE$

Collinear factorization is a statement about operator

- 12

A.Vladimirov

Partons with lattice

October 2, 2020 6/35

イロト イヨト イヨト イヨト

 $Collinear \ factorization \ \longleftrightarrow \ \ light-cone \ OPE$

Collinear factorization is a statement about operator

$$\underbrace{Z_{o}O(z,\mu)}_{n} = \sum_{n} (z^{2})^{n} \sum_{k} \underbrace{Z_{o}C_{kn}(z,\mu,\mu_{F})Z_{C}^{-1}}_{\mathbf{C}_{nk}(z,\mu,\mu_{F})} \underbrace{Z_{C}O_{kn}(z,\mu_{F})}_{\mathbf{C}_{nk}(z,\mu,\mu_{F})}$$

- Divergences of cancel between coefficient functions and operators
- ▶ Physically interesting to consider not a local limit (Wilson-Zimmermann OPE) $z^{\mu} \rightarrow 0$, but $z^2 \rightarrow 0$
- ▶ Gives rise to the notion of twist

A.Vladimirov

イロト イヨト イヨト イヨト

Universität Regensburg

æ

DIS:
$$W^{\mu\nu}(q,p) \sim \int d^4 z e^{iqz} \langle p | J^{\mu}(z) J^{\nu}(0) | p \rangle$$

 $\label{eq:Bjorken limit:} {\rm Bjorken \ limit:} \qquad Q^2 \gg p^2, \qquad (pq) \sim Q^2 \ (x={\rm fixed})$

DIS:
$$W^{\mu\nu}(q,p) \sim \int d^4 z e^{iqz} \langle p | J^{\mu}(z) J^{\nu}(0) | p \rangle$$

 $\label{eq:Bjorken limit:} {\rm Bjorken \ limit:} \qquad Q^2 \gg p^2, \qquad (pq) \sim Q^2 \ (x={\rm fixed})$

1. Expanding operator: $\int d^4 z e^{iqz} \langle p | \sum z^{\mu_1} ... z^{\mu_n} \quad C_n \otimes O_{\mu_1 ... \mu_n}(0) | p \rangle$

DIS:
$$W^{\mu\nu}(q,p) \sim \int d^4 z e^{iqz} \langle p|J^{\mu}(z)J^{\nu}(0)|p\rangle$$

 $\label{eq:Bjorken limit: Q^2 > p^2, \qquad (pq) \sim Q^2 \ (x = {\rm fixed})$

1. Expanding operator:
$$\int d^4 z e^{iqz} \langle p | \sum z^{\mu_1} \dots z^{\mu_n} \quad C_n \otimes O_{\mu_1 \dots \mu_n}(0) | p \rangle$$

2. Rearranging:
$$\left(\int d^4 z e^{iqz} \sum z^{\mu_1} \dots z^{\mu_n} \quad C_n \right) \otimes \langle p | O_{\mu_1 \dots \mu_n}(0) | p \rangle$$

DIS:
$$W^{\mu\nu}(q,p) \sim \int d^4 z e^{iqz} \langle p|J^{\mu}(z)J^{\nu}(0)|p\rangle$$

Bjorken limit: $Q^2 \gg p^2$, $(pq) \sim Q^2$ (x = fixed)

1. Expanding operator: $\int d^{4}z e^{iqz} \langle p | \sum z^{\mu_{1}} ... z^{\mu_{n}} C_{n} \otimes O_{\mu_{1}...\mu_{n}}(0) | p \rangle$ 2. Rearranging: $\left(\int d^{4}z e^{iqz} \sum z^{\mu_{1}} ... z^{\mu_{n}} C_{n} \right) \otimes \langle p | O_{\mu_{1}...\mu_{n}}(0) | p \rangle$ 3. Evaluating: $\left(\frac{q^{\mu_{1}} ... q^{\mu_{n}}}{|O^{2}|^{n+2}} + ... + \frac{q^{\mu_{1}} ... q^{\mu_{n}\mu_{1}}}{|O^{2}|^{n+1}} + ... \right) C_{n} \otimes f_{n} p_{\mu_{1}} ... p_{\mu_{n}}$

Universität Regensburg

臣

イロト イヨト イヨト イヨト

DIS:
$$W^{\mu\nu}(q,p) \sim \int d^4z e^{iqz} \langle p|J^{\mu}(z)J^{\nu}(0)|p\rangle$$

 $Q^2 \gg p^2$, $(pq) \sim Q^2 \ (x = \text{fixed})$ Bjorken limit:

1. Expanding operator:
$$\int d^{4}z e^{iqz} \langle p| \sum z^{\mu_{1}} ... z^{\mu_{n}} C_{n} \otimes O_{\mu_{1}...\mu_{n}}(0)|p\rangle$$
2. Rearranging:
$$\left(\int d^{4}z e^{iqz} \sum z^{\mu_{1}} ... z^{\mu_{n}} C_{n}\right) \otimes \langle p|O_{\mu_{1}...\mu_{n}}(0)|p\rangle$$
3. Evaluating:
$$\left(\frac{q^{\mu_{1}} ... q^{\mu_{n}}}{[Q^{2}]^{n+2}} + ... + \frac{q^{\mu_{1}} ... g^{\mu_{i}\mu_{j}} ... q^{\mu_{n}}}{[Q^{2}]^{n+1}} + ...\right) C_{n} \otimes f_{n} p_{\mu_{1}} ... p_{\mu_{n}}$$
4. Contracting:
$$\frac{1}{Q^{4}} \left(x^{-n} + ... + x^{-n-2} \frac{p^{2}}{Q^{2}} + ...\right) C_{n} \otimes f_{n}$$

The leading term is given by symmetric traceless part of the operator

4. Contracting:

In DIS the leading term is given by a collection of terms These terms are characterized by a quantum number "twist" twist=dimension-spin

$$\bar{q}\gamma^{\mu}\partial^{\nu}q = \underbrace{\bar{q}\left(\frac{\gamma^{\mu}\partial^{\nu} + \gamma^{\nu}\partial^{\mu}}{2} - g^{\mu\nu} \not\partial\right)}_{\text{tw-2}} q + \underbrace{\bar{q}\left(\frac{\gamma^{\mu}\partial^{\nu} - \gamma^{\nu}\partial^{\mu}}{2}\right)}_{\text{tw-3}} q + g^{\mu\nu}\underbrace{\bar{q} \not\partial q}_{\text{tw-4}} \tag{1}$$

Each operator can be decomposed into components with definite twist

$$O^{\mu_1\dots\mu_n} = \sum_{\mathrm{tw}} A^{\mu_1\dots\mu_n}_{\mathrm{tw};\nu_1\dots\nu_n} O^{\nu_1\dots\nu_n}_{\mathrm{tw}}$$

In fact, it is a decomposition over irreducible representations of Lorentz-group

A.Vladimirov

In DIS the leading term is given by a collection of terms These terms are characterized by a quantum number "twist" twist=dimension-spin

$$\begin{split} W^{\mu\nu} &\sim \int d^4 z e^{iqz} \sum_n z^{\mu_1} \dots z^{\mu_n} C_n \otimes \langle p | O_{\mu_1 \dots \mu_n}(0) | p \rangle \\ &\sim \int d^4 z e^{iqz} \sum_n z^{\mu_1} \dots z^{\mu_n} \sum_{\mathrm{tw}=2}^{\infty} C_n^{\mathrm{tw}} \otimes \langle p | O_{\mu_1 \dots \mu_n}^{\mathrm{tw}}(0) | p \rangle \\ &\sim \frac{1}{Q^4} \sum_n \left(x^n C_n^{\mathrm{tw}-2} f_n^{\mathrm{tw}-2} + \frac{1}{Q^2} x^{n-2} C_n^{\mathrm{tw}-4} f_n^{\mathrm{tw}-4} + \dots \right) \end{split}$$

▶ Operators with different twist do not mix with each other (irreducible Lorentz representation)

Preserved by evolution!

 \blacktriangleright Twist \neq power

- ▶ Indeed, in DIS, at Q^{-n} appear only operators with twist < n
- Possible kinematical factors
- Equation of motions!

イロト イヨト イヨト イヨト

Universität Regensburg

Back to non-local definition!

The sum over n and twist-decomposition commutes!

$$\sum_{n} z^{\mu_1} \dots z^{\mu_n} O^{\text{tw-n}}_{\mu_1 \dots \mu_n} = z^{2[n/2]} O^{\text{tw-n}}(z)$$

▶ Also for quantum operators [Anikin,Zavyalov,78]

Light-cone OPE:

$$O(z) = \sum_{n} z^{2[n/2]} C_{\mathrm{tw}-n} \otimes O^{\mathrm{tw}-n}(z)$$

Here, operator does not have z^2 -contribution \Rightarrow light-cone

Light-cone without light-cone:

it is essential to realize that (the function is independent on z^2) $\neq f(z^2 = 0)$

Famous and important example:

$$\bar{q}(z)\gamma^{\mu}q(0) = \underbrace{\int_{0}^{1} du \frac{\partial}{\partial z_{\mu}} \bar{q}(uz) \not zq(0)}_{\text{tw-2}} + \underbrace{\int_{0}^{1} du \int_{0}^{u} dv z^{\nu} \bar{q}(uz) \not zF_{\mu\nu}(vz)q(0) + \dots + z^{2} \dots}_{\text{tw-3}}$$

Hint: integrate by parts, and expand at $z^{\mu} \to 0$.

 $\bar{q}(z) \not = \text{twist-}2 + z^2 \text{twist-}4$

A.Vladimirov

October 2, 2020 10/35

イロト イヨト イヨト イヨト

Universität Regensburg

æ

Common terminology: light-cone decomposition

$$v^{\mu} = n^{\mu}v^{-} + \bar{n}^{\mu}v^{+} + v_{T}^{\mu}$$

$$n^{2} = \bar{n}^{2} = 0, \qquad (n\bar{n}) = 1, \qquad (nv_{T}) = (\bar{n}v_{T}) = 0.$$

$$n^{\mu} = \{1,0,0,1\}/\sqrt{2}$$

$$\bar{n}^{\mu} = \{1,0,0,-1\}/\sqrt{2}$$
 \blacktriangleright Hadron momentum $(p^2 = m^2)$

(日) (四) (三) (三)

October 2, 2020

11/35

twist-2
$$\rightarrow \quad \bar{q}(nz^+)\gamma^+q(0)$$
 (1)

twist-3
$$\rightarrow \bar{q}(nz^+)q(0) \sim \int \bar{q}\sigma^{\mu+}F_{\mu+}q(0)$$
 (2)

$$\text{indefinite} \to \quad \bar{q}(nz^+)\gamma^{\mu}q(0) \sim \bar{n}^{\mu}\underbrace{\bar{q}(nz^+)\gamma^+q(0)}_{\text{tw-2}} + \underbrace{\bar{q}(nz^+)\gamma^{\mu}_Tq(0)}_{\bar{q}\gamma^+F_{\mu+}q=\text{tw-3}} + n^{\mu}\underbrace{\bar{q}(nz^+)\gamma^-q(0)}_{\text{tw-4}} \quad (3)$$

$$tw-3 \rightarrow \bar{q}(nz^+)\gamma^+\partial_{\mu_T}q(0) \tag{4}$$

tot.der.tw-2
$$\rightarrow \quad \partial_{\mu} \{ \overline{q}(nz^+) \gamma^+ q(0)_{tw-2} \}$$
 (5)

Don't be confused by modern terminology!

- ▶ Geometrical twist \equiv "dimension spin "
- ▶ Collinear twist \sim "dimension"
- ▶ Dynamical twist ~ power of Q^2 in structure function
- ▶ Conformal twist
- ▶ TMD twist

...

OPE is unique expression

$$J^{\mu}(x)J^{\nu}(0) = -\frac{x^{\mu}g^{\nu\alpha} + x^{\nu}g^{\mu\alpha} - x^{\alpha}g^{\mu\nu}}{(4\pi)^{2}x^{4}}\int dy K(x,y,\alpha_{s})[\bar{q}(y)\gamma_{\alpha}q(0)] + \dots$$

Deep inelastic scattering (DIS) $e + p \rightarrow e + X$

$$d\sigma \sim L_{\mu
u}W^{\mu
u} = L_{\mu
u} \int e^{i(qz)} \langle p|J^{\mu}(z)J^{
u}(0)|p
angle$$

Meson production $\gamma^* + \gamma^* \to \eta$

$$A = e_{\mu}e_{\nu} \int e^{i((q_1+q_2)z)} \langle 0|J^{\mu}(z)J^{\nu}(0)|p\rangle$$

Deeply virtual Compton Scattering (DVCS) $\gamma^* + p \rightarrow \gamma + p$

$$A = e_{\mu}e_{\nu} \int e^{i((q_1+q_2)z)} \langle p'|J^{\mu}(z)J^{\nu}(0)|p\rangle$$

A.Vladimirov

Single operator \rightarrow different matrix elements \rightarrow different observables

$$O(z) = \bar{q}(z) \not z q(0)|_{\mathrm{tw-2}}$$

Parton distribution function (PDF)

$$\langle p|O(z)|p\rangle = 2(pz)\int dx e^{ix(pz)}f_1(x)$$
 (6)

Distribution amplitude (DA)

$$\langle 0|O(z)|p
angle = 2(pz)\int dx e^{ix(pz)}\varphi(x)$$

Generalized parton distribution

$$\langle p|O(z)|p'\rangle = 2(pz)\int dxd\xi e^{i(x+\xi)(pz)+i(x-\xi)(pz)}H(x,\xi)(8)$$

+ Generalized distribution amplitudes

A.Vladimirov

(7)

How to measure parton distributions on lattice?

In principle...

- For the second density of the second densit
- ▶ <u>It does not matter which direction is z</u>. It also could be $z^{\mu} = \hat{n}_{3}^{\mu} z$
- Realized long ago [V.Braun, P.Gornicki, L.Mankiewicz, 94], [P.Hoyer, M.Vanttinen, 96] ...
 [V.Braun, D.Muller, 06]

Ji's paper

▶ Xiangdong Ji, Phys.Rev.Lett. 110 (2013) \rightarrow explosion of works

Ioffe-time distribution (ITD) [V.Braun, at al, 9410318]

$$p|\bar{q}(z)\gamma^{\mu}[z,0]q(0)|p\rangle = 2p^{\mu}\mathcal{M}((pz),z^2) + 2z^{\mu}\mathcal{N}((pz),z^2)$$
(9)

- ▶ That is what measured on the lattice .
- *M* ~ (twist − 2) + z²...
 N ~ (twist − 2/4) + z²...

Ioffe-time distribution (ITD) [V.Braun, at al, 9410318]

$$\langle p|\bar{q}(z)\gamma^{\mu}[z,0]q(0)|p\rangle = 2p^{\mu}\mathcal{M}((pz),z^2) + 2z^{\mu}\mathcal{N}((pz),z^2)$$
(9)

Parton distirbution function (PDF)

$$f_1(x) = \int \frac{d(pz)}{2\pi} e^{-ix(pz)} \mathcal{M}((pz), z^2 = 0)$$
(10)

A.Vladimirov

Ioffe-time distribution (ITD) [V.Braun, at al, 9410318]

$$p|\bar{q}(z)\gamma^{\mu}[z,0]q(0)|p\rangle = 2p^{\mu}\mathcal{M}((pz),z^2) + 2z^{\mu}\mathcal{N}((pz),z^2)$$
(9)

Parton distirbution function (PDF)

$$f_1(x) = \int \frac{d(pz)}{2\pi} e^{-ix(pz)} \mathcal{M}((pz), z^2 = 0)$$
(10)

Pseudo-parton distribution function pseudoPDF [A.Radyuskin,17]

$$P(x, z^2) = |z| \int_{-\infty}^{\infty} \frac{d(pv)}{2\pi} e^{-ix|z|(pv)} \mathcal{M}((pz), z^2)$$
(11)

Ioffe-time distribution (ITD) [V.Braun, at al, 9410318]

$$p|\bar{q}(z)\gamma^{\mu}[z,0]q(0)|p\rangle = 2p^{\mu}\mathcal{M}((pz),z^2) + 2z^{\mu}\mathcal{N}((pz),z^2)$$
(9)

Parton distirbution function (PDF)

$$f_1(x) = \int \frac{d(pz)}{2\pi} e^{-ix(pz)} \mathcal{M}((pz), z^2 = 0)$$
(10)

Pseudo-parton distribution function pseudoPDF [A.Radyuskin,17]

$$P(x, z^2) = |z| \int_{-\infty}^{\infty} \frac{d(pv)}{2\pi} e^{-ix|z|(pv)} \mathcal{M}((pz), z^2)$$
(11)

Quasi-parton distribution function quasiPDF [X.Ji,et al,14]

$$\tilde{Q}(x,|p|^2) = |p| \int_{-\infty}^{\infty} \frac{d(vz)}{2\pi} e^{-ix|p|(vz)} \mathcal{M}((pz),z^2)$$
(12)

A.Vladimirov

Partons with lattice

Theory-wise quasiPDF and pseudoPDF are same. But practically there is a lot of difference

$$P(x, z^{2}) = |z| \int_{-\infty}^{\infty} \frac{d(pv)}{2\pi} e^{-ix|z|(pv)} \mathcal{M}((pz), z^{2})$$
$$\tilde{Q}(x, |p|^{2}) = |p| \int_{-\infty}^{\infty} \frac{d(vz)}{2\pi} e^{-ix|p|(vz)} \mathcal{M}((pz), z^{2})$$

The problem is power corrections

- ▶ If $p_z \to \infty$ both pictures coincides
- pseudo-PDF preserves structure of "original" power expansion
- quasi-PDF mixes terms "original" power expansion

・ロト ・四ト ・ヨト ・ヨト

Universität Regensburg

臣

$$\bar{q}(z)\gamma^{\mu}[z,0]q(0) = \int_{0}^{1} du \frac{\partial}{\partial z^{\mu}} \underbrace{\bar{q}(uz) \not z[uz,0]q(0)}_{\text{tw-2}} (1 + \alpha_{s}...) + z^{2}[\text{tw-3/4}] + ...$$
$$\langle p|\bar{q}(z)\gamma^{\mu}[z,0]q(0)|p\rangle = 2p^{\mu} \int_{-1}^{1} dx e^{ix(pz)} \underbrace{f_{1}(x,x(pv))}_{\text{PDF}} (1 + \alpha_{s}...) + z^{2}[\text{tw-2/3/4}] + ...$$

$$\bar{q}(z)\gamma^{\mu}[z,0]q(0) = \int_{0}^{1} du \frac{\partial}{\partial z^{\mu}} \underbrace{\bar{q}(uz) \not[uz,0]q(0)}_{\text{tw}-2} (1 + \alpha_{s}...) + z^{2}[\text{tw}-3/4] + ...$$
$$\langle p|\bar{q}(z)\gamma^{\mu}[z,0]q(0)|p\rangle = 2p^{\mu} \int_{-1}^{1} dx e^{ix(pz)} \underbrace{f_{1}(x,x(pv))}_{\text{PDF}} (1 + \alpha_{s}...) + z^{2}[\text{tw}-2/3/4] + ...$$

How important power corrections?

[V.Braun, AV, J.H.Zhang, 1810.00048]

PseudoPDF

 $P(x, z^{2}) = f(x) \left(1 + v^{2} z^{2} \Lambda^{2} R_{P}(x) \right)$

イロト イヨト イヨト イヨト

Universitat kegensburg

æ

Life is not so simple..

Topics that I left

- ▶ Perturbative computations (some already computed at NNLO!).
- Renomalization (linear divergences)
- ▶ Normalization (infinitely many ways, some cases effectively clean-out power corrections)
- ▶ Higher twist observables (very new and hot topic)
- Correlation of different operators (often much simple to measure on lattice. Smaller noise!)

イロト イヨト イヨト イヨ

Why measurement of PDFs on lattice is interesting?

In foreseen future lattice cannot compete with experiment in **PDF**-measurements

- ▶ Maximum $P \sim 2 3$ GeV
- ▶ Only connected contributions (non-singlet PDF), no gluons..
- Almost unknown systematics

[picture by J.Karpie]

Why measurement of PDFs on lattice is interesting?

In foreseen future lattice cannot compete with experiment in **PDF**-measurements

- ▶ Maximum $P \sim 2 3$ GeV
- ▶ Only connected contributions (non-singlet PDF), no gluons..
- Almost unknown systematics

But lattice has access to physically unmeasurable PDFs

- ▶ Higher twist PDFs
- ▶ "Exotic states" (kaon PDFs)
- "Exotic regimes" H(x, x)
- ▶ etc.

[picture by K.Cichv]

Part-2: transverse momentum dependent (TMD) distributions on lattice

A.Vladimirov

Partons with lattice

October 2, 2020 22/35

TMD factorization \neq collinear factorization

▶ It could not be related to local OPE

however [V.Moos, AV;2008.01744]

- ▶ It deals with different type of divergences
- ▶ More degrees of freedom

$$\langle p|O|p\rangle = \mathcal{N}^{-1} \int D\bar{q} Dq DA \ e^{iS_{QCD}} \ \bar{\Psi}[\bar{q},q,A] \ O[\bar{q},q,A] \ \Psi[\bar{q},q,A]$$

Let me assume that accelerated hadron is made of the fields that move collinearly

$$\Psi[\bar{q}, q, A] \to \Psi[\bar{q}_c, q_c, A_c], \qquad \partial_\mu q_c \sim \{1, \lambda^2, \lambda\}$$

$$q = q_c + q_h, \qquad A = A_c + A_h$$

$$Dq \rightarrow Dq_c Dq_h, \qquad DA = DA_c DA_h$$

イロト イヨト イヨト イヨト

Light-cone OPE via background field method e.g. [Abbott, 81; Braun, Balitsky, 89,...]

$$\langle p|O|p\rangle = \mathcal{N}^{-1} \int D\bar{q} Dq DA \ e^{iS_{QCD}} \ \bar{\Psi}[\bar{q},q,A] \ O[\bar{q},q,A] \ \Psi[\bar{q},q,A]$$

Integrate over fast components

$$\langle p|O|p\rangle = \mathcal{N}^{-1} \int D\bar{q}DqDA \ e^{iS_{QCD}} \ \bar{\Psi}[\bar{q},q,A] \ O^{eff}[\bar{q},q,A] \ \Psi[\bar{q},q,A]$$

$$O^{eff}[\bar{q},q,A] = \mathcal{N}^{-1} \int D\bar{q}_h Dq_h DA_h \ e^{iS_{QCD}^h + iS_{QCD}^{back}} \ O^{eff}[\bar{q} + \bar{q}_h,q + q_h,A + A_h]$$
$$= \underbrace{\sum_n C_n \otimes O_n[\bar{q},q,A]}_{\text{light-cone OPE}} \qquad \qquad O_n \sim \lambda^n$$

The simplest way to deal with OPE for power suppressed terms
Universität Regenburg
A. Vladimirov Partons with lattice October 2, 2020 24/35

In TMD factorization one considers two oppositely moving hadrons $p+p \rightarrow \gamma + X$

$$\langle p_1, p_2 | O | p_1, p_2 \rangle = \mathcal{N}^{-1} \int D\bar{q} Dq DA \ e^{iS_{QCD}} \ \bar{\Psi}_1 \ \bar{\Psi}_2 \ O[\bar{q}, q, A] \ \Psi_1 \ \Psi_2$$

Each hadron is made of the fields that move collinearly

$$\begin{split} \Psi_1[\bar{q},q,A] &\to \Psi_1[\bar{q}_c,q_c,A_c], \qquad \partial_\mu q_c \sim \{1,\lambda^2,\lambda\} \\ \Psi_2[\bar{q},q,A] &\to \Psi_2[\bar{q}_{\bar{c}},q_{\bar{c}},A_{\bar{c}}], \qquad \partial_\mu q_{\bar{c}} \sim \{\lambda^2,1,\lambda\} \end{split}$$

Double counting in the "soft" region $\{\lambda^2, \lambda^2, \lambda\}$

To solve this issue \rightarrow introduce extra "soft" modes and subtract them (complicated story) Universität Regensburg In TMD factorization in background formulation [I.Balitsky,18;AV,in prep.] disclaimer: no strict proof, but it works for known cases

$$\langle p_1, p_2 | O | p_1, p_2 \rangle = \int [D\bar{q}DqDA] \ e^{iS_{QCD}} \ \bar{\Psi}_1 O_1^{\text{eff}} \Psi_1 \times \mathcal{S} \times \int [D\bar{q}DqDA] \ e^{iS_{QCD}} \ \bar{\Psi}_2 O_2^{\text{eff}} \Psi_2$$

$$O_1^{\text{eff}} \mathcal{S}O_2^{\text{eff}} = \frac{\int [D\bar{q}DqDA] e^{iS_{QCD}+iS_{QCD}^{back}}O[q_h + q_c + q_{\bar{c}} + q_s, ..]}{\left(\int [D\bar{q}DqDA] e^{iS_{QCD}+iS_{QCD}^{back}}O[q_h + q_s, ..]\right)^2}$$

Universität Regensburg

æ

A.Vladimirov

Partons with lattice

October 2, 2020 26/35

・ロト ・回ト ・ヨト ・ヨト

Partons with lattice

October 2, 2020

Collins-Soper kernel

$$\frac{dO_{\rm TMD}(b;\mu,\zeta)}{d\ln\mu} = \gamma_F(\mu,\zeta)O_{\rm TMD}(b;\mu,\zeta)$$

$$\frac{dO_{\rm TMD}(b;\mu,\zeta)}{d\ln\zeta} = -\mathcal{D}(b,\mu)O_{\rm TMD}(b;\mu,\zeta)$$

CS-kernel dictates evolution for TMD distribution

- ▶ Is a non-perturbative function
- Perturbative at small-b (known to NNLO=three-loops)
- Describes QCD vacuum properties [AV;2003.02288]
- Extracted from data

A.Vladimirov

Constructing TMD-sensitive observable suitable for lattice

Restrictions on observable

- ▶ Equal-time
- ▶ With transverse size (bP) = 0
- ▶ With anti-collinear modes

Simplest case:

$$\begin{split} W_{f \leftarrow h}^{[\Gamma]}(b; \ell, L; v, P, S) &= \frac{1}{2} \langle P, S | \bar{q}_f(b + \ell v) \Gamma \\ \times [b + \ell v, b + L v] [b + L v, L v] [L v, 0] q_f(0) | P, S \rangle, \end{split}$$

イロト イヨト イヨト イヨ

 Γ = some Dirac structure

Universität Regensburg

æ

Constructing TMD-sensitive observable suitable for lattice

Restrictions on observable

- ▶ Equal-time
- ▶ With transverse size (bP) = 0
- ▶ With anti-collinear modes

Simplest case:

$$\begin{split} W_{f \leftarrow h}^{[\Gamma]}(b; \ell, L; v, P, S) &= \frac{1}{2} \langle P, S | \bar{q}_f(b + \ell v) \Gamma \\ \times [b + \ell v, b + L v] [b + L v, L v] [L v, 0] q_f(0) | P, S \rangle, \end{split}$$

イロト イロト イヨト イヨト

 Γ = some Dirac structure

It is like DIS+(instant)jet

At
$$L \to \infty$$
 $[0, Lv] \to H(0)$ (with $\mathcal{L}_{HH} = H^{\dagger}(ivD)H$)

current $J_i(x) = H^{\dagger}(x)q(x)$, hadron tensor $W_{ij} = \langle P|J_i^{\dagger}(x)J_j(0)|P\rangle$

Factorization is (almost) equivalent to factorization of SIDIS or DY

Universität Regensburg

October 2, 2020 30/35

< □
 < □

Factorization is (almost) equivalent to factorization of SIDIS or DY

Negelecting power corrections and accounting the overlap in the soft modes

$$W_{f\leftarrow h}^{[\Gamma]}(b;\ell,L;v,P,S) = \left| C_H(\hat{p}v) \right|^2 \widetilde{\Phi}_{f\leftarrow h}^{[\Gamma']}(b,\ell v^-;P,S) \widetilde{\Psi}(b,\ell v^+;v) \frac{S(b)}{Z.b.}$$

A.Vladimirov

October 2, 2020 30/35

Factorization is (almost) equivalent to factorization of SIDIS or DY

Negelecting power corrections and accounting the overlap in the soft modes

$$W_{f \leftarrow h}^{[\Gamma]}(b; \ell, L; v, P, S) = \left| C_{H}(\hat{p}v) \right|^{2} \tilde{\Phi}_{f \leftarrow h}^{[\Gamma']}(b, \ell v^{-}; P, S) \tilde{\Psi}(b, \ell v^{+}; v) \frac{S(b)}{Z.b.}$$
operator of parton's moment un $(\hat{p} \sim xP)$
Fourier conjugated to ℓ
Universität Regenuble

A.Vladimirov

Partons with lattice

Sources and sizes of power corrections

$$W^{[\Gamma]} = |C_H\left(\frac{\hat{p}v}{\mu}\right)|^2 \Phi^{[\Gamma']}(b,\ell v^-;\mu,\zeta;P,S) \Psi(b;\mu,\bar{\zeta};v) + \text{power corrections}$$

- ▶ $\frac{P^-}{x^2P^+}$ and $\frac{\ell}{L}$ from collinear/anti-collinear modes separation ▶ $\frac{1}{x|b|P^+}$ from collinear/transverse modes separation
- $\frac{b}{L}$ from anti-collinear/transverse modes separation
- ▶ $\ell \Lambda_{\rm QCD}$ to remove ℓ -dependence from Ψ

Factorization limit: $L \to \infty$, $P^+ \to \infty$, b-fixed(non-zero), ℓ -fixed(also zero). No need for Fourier transform!

A.Vladimirov

(日) (四) (三) (三) (三)

Universität Regensburg

 $\Psi(b;\mu,\bar{\zeta};v)$ is generally unknown (see however X.Ji, Liu,Liu, 2019) It cancels in the ratios with same b. If the same $v, \ell L$ are taken the Wilson-line renormalization factor also cancel.

$$\begin{split} R &= & \frac{W_{f_1 \leftarrow h_1}^{[\Gamma_1]}(b;\ell,L,v;P_1,S_1;\mu)}{W_{f_2 \leftarrow h_2}^{[\Gamma_2]}(b;\ell,L,v;P_2,S_2;\mu)} \\ &= & \frac{|C_H\left(\frac{\hat{p}v}{\mu}\right)|^2 \, \Phi_{f_1 \leftarrow h_1}^{[\Gamma_1']}(b,\ell v^-;\mu,\zeta;P_1,S_1)}{|C_H\left(\frac{\hat{p}v}{\mu}\right)|^2 \, \Phi_{f_2 \leftarrow h_2}^{[\Gamma_2']}(b,\ell v^-;\mu,\zeta;P_2,S_2)} + \text{power corrections} \end{split}$$

Plenty of information/tests

- ▶ Test power corrections! E.g. $\Gamma_1 = \gamma^-$ and $\Gamma_2 = \gamma^+$ then R = power corrections
- Extract moments of TMDs
- ...
- ▶ Collins-Soper kernel

Universität Regensburg

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへで

Extraction of Collins-Soper kernel \mathcal{D} Ratio at different $P_{1,2}$ and rest all the same

 $[\texttt{Ebert},\texttt{Stewart},\texttt{Zhao},\texttt{1811},\texttt{00026}] \; [\texttt{Schäfer},\texttt{AV},\texttt{2002},\texttt{07527}]$

To facilitate cancellation set $\ell = 0$

$$R_{P_1/P_2} = \left(\frac{P_2^+}{P_1^+}\right)^{2\mathcal{D}(b,\mu)+1} \frac{\int dx \Big| C_H\left(\frac{xv^-P_1^+}{\mu}\right) \Big|^2 \Phi_{f\leftarrow h}^{[\Gamma']}(x,b) |x|^{-2\mathcal{D}(b,\mu)}}{\int dx \Big| C_H\left(\frac{xv^-P_2^+}{\mu}\right) \Big|^2 \Phi_{f\leftarrow h}^{[\Gamma']}(x,b) |x|^{-2\mathcal{D}(b,\mu)}} + \text{power corr.}$$

TMDs do not cancel only due to perturbative logarithms (here $\mu = 2|v^-|\sqrt{P_1^+P_2^+})$

$$R_{P_1/P_2}(\ell=0) = \left(\frac{P_2^+}{P_1^+}\right)^{2\mathcal{D}(b,\mu)+1} \mathbf{r} + \mathbf{power \ corrections}$$

$$\mathbf{r} = 1 + 4C_F \frac{\alpha_s(\mu)}{4\pi} \ln\left(\frac{P_1^+}{P_2^+}\right) \left[1 - 2M_{\ln|x|}^{\Gamma}(b,\mu)\right] + \mathcal{O}(\alpha_s^2)$$

A.Vladimirov

October 2, 2020 33/35

Collins-Soper kernel on lattice

M constant (in b) lets determine it on the lattice

- Various convigurations
- ▶ Roughly ($\pm 50\%$) agrees with phenomenology
- ▶ Also contains part of power correction!

Universität Regensburg

A.Vladimirov

October 2, 2020 34/35

æ

イロト イヨト イヨト イヨト

Collins-Soper kernel on lattice

A.Vladimirov

Partons with lattice

October 2, 2020 34/35

(General)Theory background is absolutely solid

▶ Factorization theorem is the operator statement

Real life

- ▶ There are plenty of "technical" problems (small P, normalization, lattice noise, etc.)
- ▶ Not all "definitions" equally good (e.g. quasiPDF vs. pseudoPDF)

Nonetheless, I am sure that lattice can/must/will greatly contribute to the understanding of parton picture

although may be not in straightforward way

