Parton distributions with lattice QCD: how it works.

Alexey Vladimirov
Regensburg University

Intrinsic hadron structure is (probably) the most complicated topic in the QFT.
It is essentially non-perturbative (confinement!)
There are several method to study hadrons insides, parton distributions is only one of them, but it is the one which is most well-known and well-explored

Intrinsic hadron structure is (probably) the most complicated topic in the QFT.
It is essentially non-perturbative (confinement!)
There are several method to study hadrons insides, parton distributions is only one of them, but it is the one which is most well-known and well-explored
»»» PDFs, FFs, DAs, TMDs, GPDs, jetF, ... «««

All these objects are artificial, but they could be obtained from the data by means of factorization theorems.

Factorization theorem is a statement of the form:
Observable $=($ perturbative $) \times($ non-perturbative $)+$ suppressed terms

$$
\begin{gather*}
\text { [Drell, Yan, 70] } \\
\begin{array}{c}
\frac{d \sigma}{d Q^{2}}=\left(\frac{4 \pi \alpha^{2}}{3 Q^{2}}\right)\left(\frac{1}{Q^{2}}\right) \mathscr{F}(\tau)=\left(\frac{4 \pi \alpha^{2}}{3 Q^{2}}\right)\left(\frac{1}{Q^{2}}\right) \int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} \delta\left(x_{1} x_{2}-\tau\right) \sum_{a} \lambda_{a}{ }^{-2} F_{2 a}\left(x_{1}\right) F_{2 \bar{a}}^{\prime}\left(x_{2}\right), \\
\downarrow \downarrow \downarrow \downarrow \downarrow \\
\quad[\text { today's arxiv] } \\
\frac{d \sigma^{c}}{d y}= \\
\sigma_{\mathrm{B}}^{c}\left(\mu_{R}^{2}\right) \sum_{a, b=q, \bar{q}, g} \int_{x_{1}^{0}}^{1} \frac{d z_{1}}{z_{1}} \int_{x_{2}^{0}}^{1} \frac{d z_{2}}{z_{2}} f_{a}\left(\frac{x_{1}^{0}}{z_{1}}, \mu_{F}^{2}\right) \\
\times \\
\\
\\
f_{b}\left(\frac{x_{2}^{0}}{z_{2}}, \mu_{F}^{2}\right) \Delta_{d, a b}^{c}\left(z_{1}, z_{2}, q^{2}, \mu_{F}^{2}, \mu_{R}^{2}\right)
\end{array}
\end{gather*}
$$

All these objects are artificial, but they could be obtained from the data by means of factorization theorems.

Factorization theorem is a statement of the form: Observable $=($ perturbative $) \times($ non-perturbative $)+$ suppressed terms

Collinear factorization

- Theorem!
- Describes many "1D" observables
- Structure is understood at all levels
- PDFs, DAs, GPDs, FFs

TMD(-like) factorization

- Almost theorem
- Describes (some) 2D observables
- There are holes...
- TMDPDFs, TMDFFs

Naive factorization

- Model assumption
- Applied everywhere
- Often works very-well
- Jets, MC-generators, ...

I will try to explain basics of collinear and TMD factorization \Rightarrow lattice observables

Part-1:

collinear parton distributions on lattice

Note on terminology

Collinear factorization is about asymptotic behavior of operators.
The main tool is Operator Product Expansion (OPE)
[Wilson,Zimmermann, 71]

$$
A_{1}\left(x+\xi_{1}\right) \ldots A_{a}\left(x+\xi_{a}\right)=\sum_{k=1}^{\infty} f_{k}\left(\xi_{1}, \ldots, \xi_{a}\right) B_{k}(x)
$$

but in a much wider sense
The operators on LHS are generally non-local

Collinear factorization \longleftrightarrow light-cone OPE

Collinear factorization is a statement about operator

Universitãt Regensburg

Collinear factorization \longleftrightarrow light-cone OPE

Collinear factorization is a statement about operator

$$
\underbrace{Z_{o} O(z, \mu)}=\sum_{n}\left(z^{2}\right)^{n} \sum_{k} \underbrace{Z_{o} C_{k n}\left(z, \mu, \mu_{F}\right) Z_{C}^{-1}}_{\mathbf{C}_{n k}\left(z, \mu, \mu_{F}\right)} \underbrace{Z_{C} O_{k n}\left(z, \mu_{F}\right)}
$$

- Divergences of cancel between coefficient functions and operators
- Physically interesting to consider not a local limit (Wilson-Zimmermann OPE) $z^{\mu} \rightarrow 0$, but $z^{2} \rightarrow 0$
- Gives rise to the notion of twist

Universitãt Regensburg

Difference between local and light-cone expansion

DIS : $\quad W^{\mu \nu}(q, p) \sim \int d^{4} z e^{i q z}\langle p| J^{\mu}(z) J^{\nu}(0)|p\rangle$
Bjorken limit: $\quad Q^{2} \gg p^{2}, \quad(p q) \sim Q^{2}(x=$ fixed $)$

Difference between local and light-cone expansion

DIS : $\quad W^{\mu \nu}(q, p) \sim \int d^{4} z e^{i q z}\langle p| J^{\mu}(z) J^{\nu}(0)|p\rangle$
Bjorken limit: $\quad Q^{2} \gg p^{2}, \quad(p q) \sim Q^{2}(x=$ fixed $)$

1. Expanding operator: $\quad \int d^{4} z e^{i q z}\langle p| \sum z^{\mu_{1}} \ldots z^{\mu_{n}} \quad C_{n} \otimes O_{\mu_{1} \ldots \mu_{n}}(0)|p\rangle$

Universităt Regensburg

Difference between local and light-cone expansion

DIS : $\quad W^{\mu \nu}(q, p) \sim \int d^{4} z e^{i q z}\langle p| J^{\mu}(z) J^{\nu}(0)|p\rangle$
Bjorken limit: $\quad Q^{2} \gg p^{2}, \quad(p q) \sim Q^{2}(x=$ fixed $)$

1. Expanding operator: $\quad \int d^{4} z e^{i q z}\langle p| \sum z^{\mu_{1}} \ldots z^{\mu_{n}} \quad C_{n} \otimes O_{\mu_{1} \ldots \mu_{n}}(0)|p\rangle$
2. Rearranging:

$$
\left(\int d^{4} z e^{i q z} \sum z^{\mu_{1}} \ldots z^{\mu_{n}} C_{n}\right) \otimes\langle p| O_{\mu_{1} \ldots \mu_{n}}(0)|p\rangle
$$

Difference between local and light-cone expansion

DIS : $\quad W^{\mu \nu}(q, p) \sim \int d^{4} z e^{i q z}\langle p| J^{\mu}(z) J^{\nu}(0)|p\rangle$
Bjorken limit: $\quad Q^{2} \gg p^{2}, \quad(p q) \sim Q^{2}(x=$ fixed $)$

1. Expanding operator: $\quad \int d^{4} z e^{i q z}\langle p| \sum z^{\mu_{1}} \ldots z^{\mu_{n}} \quad C_{n} \otimes O_{\mu_{1} \ldots \mu_{n}}(0)|p\rangle$
2. Rearranging: $\quad\left(\int d^{4} z e^{i q z} \sum z^{\mu_{1}} \ldots z^{\mu_{n}} \quad C_{n}\right) \otimes\langle p| O_{\mu_{1} \ldots \mu_{n}}(0)|p\rangle$
3. Evaluating: $\quad\left(\frac{q^{\mu_{1}} \ldots q^{\mu_{n}}}{\left[Q^{2}\right]^{n+2}}+. .+\frac{q^{\mu_{1}} . . g^{\mu_{i} \mu_{j}} . . q^{\mu_{n}}}{\left[Q^{2}\right]^{n+1}}+\ldots\right) C_{n} \otimes f_{n} p_{\mu_{1} \ldots p_{\mu_{n}}}$

Difference between local and light-cone expansion

DIS : $\quad W^{\mu \nu}(q, p) \sim \int d^{4} z e^{i q z}\langle p| J^{\mu}(z) J^{\nu}(0)|p\rangle$
Bjorken limit: $\quad Q^{2} \gg p^{2}, \quad(p q) \sim Q^{2}(x=$ fixed $)$

1. Expanding operator: $\quad \int d^{4} z e^{i q z}\langle p| \sum z^{\mu_{1}} \ldots z^{\mu_{n}} \quad C_{n} \otimes O_{\mu_{1} \ldots \mu_{n}}(0)|p\rangle$
2. Rearranging: $\quad\left(\int d^{4} z e^{i q z} \sum z^{\mu_{1}} \ldots z^{\mu_{n}} C_{n}\right) \otimes\langle p| O_{\mu_{1} \ldots \mu_{n}}(0)|p\rangle$
3. Evaluating: $\quad\left(\frac{q^{\mu_{1}} \ldots q^{\mu_{n}}}{\left[Q^{2}\right]^{n+2}}+. .+\frac{q^{\mu_{1}} . . g^{\mu_{i} \mu_{j}} . . q^{\mu_{n}}}{\left[Q^{2}\right]^{n+1}}+\ldots\right) C_{n} \otimes f_{n} p_{\mu_{1} \ldots p_{\mu_{n}}}$
4. Contracting:

$$
\frac{1}{Q^{4}}\left(x^{-n}+. .+x^{-n-2} \frac{p^{2}}{Q^{2}}+\ldots\right) C_{n} \otimes f_{n}
$$

The leading term is given by symmetric traceless part of the operator

In DIS the leading term is given by a collection of terms These terms are characterized by a quantum number "twist"

$$
\text { twist }=\text { dimension-spin }
$$

$$
\begin{equation*}
\bar{q} \gamma^{\mu} \partial^{\nu} q=\underbrace{\bar{q}\left(\frac{\gamma^{\mu} \partial^{\nu}+\gamma^{\nu} \partial^{\mu}}{2}-g^{\mu \nu} \not \partial\right) q}_{\mathrm{tw}-2}+\underbrace{\bar{q}\left(\frac{\gamma^{\mu} \partial^{\nu}-\gamma^{\nu} \partial^{\mu}}{2}\right) q}_{\mathrm{tw}-3}+g^{\mu \nu} \underbrace{\bar{q} \not \partial q}_{\mathrm{tw}-4} \tag{1}
\end{equation*}
$$

Each operator can be decomposed into components with definite twist

$$
O^{\mu_{1} \ldots \mu_{n}}=\sum_{\mathrm{tw}} A_{\mathrm{tw} ; \nu_{1} \ldots \nu_{n}}^{\mu_{1} \ldots \mu_{n}} O_{\mathrm{tw}}^{\nu_{1} \ldots \nu_{n}}
$$

In fact, it is a decomposition over irreducible representations of Lorentz-group

In DIS the leading term is given by a collection of terms These terms are characterized by a quantum number "twist"
twist = dimension-spin

$$
\begin{aligned}
W^{\mu \nu} & \sim \int d^{4} z e^{i q z} \sum_{n} z^{\mu_{1}} \ldots z^{\mu_{n}} C_{n} \otimes\langle p| O_{\mu_{1} \ldots \mu_{n}}(0)|p\rangle \\
& \sim \int d^{4} z e^{i q z} \sum_{n} z^{\mu_{1}} \ldots z^{\mu_{n}} \sum_{\mathrm{tw}=2}^{\infty} C_{n}^{\mathrm{tw}} \otimes\langle p| O_{\mu_{1} \ldots \mu_{n}}^{\mathrm{tw}}(0)|p\rangle \\
& \sim \frac{1}{Q^{4}} \sum_{n}\left(x^{n} C_{n}^{\mathrm{tw}-2} f_{n}^{\mathrm{tw}-2}+\frac{1}{Q^{2}} x^{n-2} C_{n}^{\mathrm{tw}-4} f_{n}^{\mathrm{tw}-4}+\ldots\right)
\end{aligned}
$$

- Operators with different twist do not mix with each other (irreducible Lorentz representation)
- Preserved by evolution!
- Twist \neq power
- Indeed, in DIS, at Q^{-n} appear only operators with twist $<n$
- Possible kinematical factors
- Equation of motions!

Universitãt Regensburg

Back to non-local definition!

The sum over n and twist-decomposition commutes!

$$
\sum_{n} z^{\mu_{1}} \ldots z^{\mu_{n}} O_{\mu_{1} \ldots \mu_{n}}^{\mathrm{tw}-\mathrm{n}}=z^{2[n / 2]} O^{\mathrm{tw}-\mathrm{n}}(z)
$$

- Also for quantum operators [Anikin, Zavyalov, 78]

$$
\begin{gathered}
\text { Light-cone OPE: } \\
O(z)=\sum_{n} z^{2[n / 2]} C_{\mathrm{tw}-n} \otimes O^{\mathrm{tw}-\mathrm{n}}(z)
\end{gathered}
$$

Here, operator does not have z^{2}-contribution \Rightarrow light-cone

Universitãt Regensburg

Light-cone without light-cone:
it is essential to realize that (the function is independent on $\left.z^{2}\right) \neq f\left(z^{2}=0\right)$

Famous and important example:

$$
\bar{q}(z) \gamma^{\mu} q(0)=\underbrace{\int_{0}^{1} d u \frac{\partial}{\partial z_{\mu}} \bar{q}(u z) \not \not q q(0)}_{\mathrm{tw}-2}+\underbrace{\int_{0}^{1} d u \int_{0}^{u} d v z^{\nu} \bar{q}(u z) \not \approx F_{\mu \nu}(v z) q(0)+\ldots+z^{2} \ldots}_{\mathrm{tw}-3}
$$

Hint: integrate by parts, and expand at $z^{\mu} \rightarrow 0$.

$$
\bar{q}(z) \not z q(0)=\text { twist }-2+z^{2} \text { twist }-4
$$

Universitãt Regensburg

Common terminology: light-cone decomposition

$$
\begin{gathered}
v^{\mu}=n^{\mu} v^{-}+\bar{n}^{\mu} v^{+}+v_{T}^{\mu} \\
n^{2}=\bar{n}^{2}=0, \quad(n \bar{n})=1, \quad\left(n v_{T}\right)=\left(\bar{n} v_{T}\right)=0
\end{gathered}
$$

$$
\begin{aligned}
n^{\mu} & =\{1,0,0,1\} / \sqrt{2} \\
\bar{n}^{\mu} & =\{1,0,0,-1\} / \sqrt{2}
\end{aligned}
$$

- Hadron momentum $\left(p^{2}=m^{2}\right)$

$$
\begin{gathered}
p^{\mu}=\bar{n}^{\mu} p^{+}+n^{\mu} \frac{m^{2}}{2 p^{+}} \\
p^{+} \gg p^{-}
\end{gathered}
$$

$$
\begin{align*}
\text { twist-2 } & \rightarrow \bar{q}\left(n z^{+}\right) \gamma^{+} q(0) \tag{1}\\
\text { twist-3 } & \rightarrow \bar{q}\left(n z^{+}\right) q(0) \sim \int \bar{q} \sigma^{\mu+} F_{\mu+} q(0) \tag{2}\\
\text { indefinite } & \rightarrow \bar{q}\left(n z^{+}\right) \gamma^{\mu} q(0) \sim \bar{n}^{\mu} \underbrace{\bar{q}\left(n z^{+}\right) \gamma^{+} q(0)}_{\text {tw-2 }}+\underbrace{\bar{q}\left(n z^{+}\right) \gamma_{T}^{\mu} q(0)}_{\bar{q} \gamma^{+} F_{\mu+q=\mathrm{tw}-3}}+n^{\mu} \underbrace{\bar{q}\left(n z^{+}\right) \gamma^{-} q(0)}_{\text {tw-4 }} \tag{3}\\
\text { tw- } 3 & \rightarrow \bar{q}\left(n z^{+}\right) \gamma^{+} \partial_{\mu_{T}} q(0) \tag{4}\\
\text { tot.der.tw- } 2 & \rightarrow \partial_{\mu}\left\{{\underline{\bar{q}\left(n z^{+}\right) \gamma^{+} q(0)}}_{\text {tw-2 }}\right\} \tag{5}
\end{align*}
$$

Don't be confused by modern terminology!

- Geometrical twist \equiv "dimension - spin "
- Collinear twist ~"dimension"
- Dynamical twist \sim power of Q^{2} in structure function
- Conformal twist
- TMD twist

Same OPE \rightarrow different observables

OPE is unique expression

$$
J^{\mu}(x) J^{\nu}(0)=-\frac{x^{\mu} g^{\nu \alpha}+x^{\nu} g^{\mu \alpha}-x^{\alpha} g^{\mu \nu}}{(4 \pi)^{2} x^{4}} \int d y K\left(x, y, \alpha_{s}\right)\left[\bar{q}(y) \gamma_{\alpha} q(0)\right]+\ldots
$$

Deep inelastic scattering (DIS) $e+p \rightarrow e+X$

$$
d \sigma \sim L_{\mu \nu} W^{\mu \nu}=L_{\mu \nu} \int e^{i(q z)}\langle p| J^{\mu}(z) J^{\nu}(0)|p\rangle
$$

Meson production $\gamma^{*}+\gamma^{*} \rightarrow \eta$

$$
A=e_{\mu} e_{\nu} \int e^{i\left(\left(q_{1}+q_{2}\right) z\right)}\langle 0| J^{\mu}(z) J^{\nu}(0)|p\rangle
$$

Deeply virtual Compton Scattering (DVCS) $\gamma^{*}+p \rightarrow \gamma+p$

$$
A=e_{\mu} e_{\nu} \int e^{i\left(\left(q_{1}+q_{2}\right) z\right)}\left\langle p^{\prime}\right| J^{\mu}(z) J^{\nu}(0)|p\rangle
$$

$$
O(z)=\left.\bar{q}(z) \not z q(0)\right|_{\mathrm{tw}-2}
$$

Parton distribution function (PDF)

$$
\begin{equation*}
\langle p| O(z)|p\rangle=2(p z) \int d x e^{i x(p z)} f_{1}(x) \tag{6}
\end{equation*}
$$

Distribution amplitude (DA)

$$
\begin{equation*}
\langle 0| O(z)|p\rangle=2(p z) \int d x e^{i x(p z)} \varphi(x) \tag{7}
\end{equation*}
$$

Generalized parton distribution

$$
\langle p| O(z)\left|p^{\prime}\right\rangle=2(p z) \int d x d \xi e^{i(x+\xi)(p z)+i(x-\xi)(p z)} H(x, \xi)(8)
$$

+ Generalized distribution amplitudes

How to measure parton distributions on lattice?

In principle...

- If we would be able to study the hadron-to-hadron expectation value of any reasonable non-local operator at $z^{2} \rightarrow 0$ in that would give us information about PDFs.
- It does not matter which direction is z. It also could be $z^{\mu}=\hat{n}_{3}^{\mu} z$
- Realized long ago
[V.Braun, P.Gornicki, L.Mankiewicz, 94], [P.Hoyer,M.Vanttinen,96] ... [V.Braun,D.Muller,06]

Ji's paper

- Xiangdong Ji, Phys.Rev.Lett. 110 (2013) \rightarrow explosion of works

Simplest operators is PDF operator it-self!

$$
O^{\mu}(z)=\bar{q}(z)[z, 0] \gamma^{\mu} q(0)
$$

Single operator \rightarrow Single matrix element \rightarrow Different observables (What?!)

Ioffe-time distribution (ITD) [V.Braun,at al, 9410318]

$$
\begin{equation*}
\langle p| \bar{q}(z) \gamma^{\mu}[z, 0] q(0)|p\rangle=2 p^{\mu} \mathcal{M}\left((p z), z^{2}\right)+2 z^{\mu} \mathcal{N}\left((p z), z^{2}\right) \tag{9}
\end{equation*}
$$

- That is what measured on the lattice.
- $\mathcal{M} \sim($ twist -2$)+z^{2} \ldots$
- $\mathcal{N} \sim($ twist $-2 / 4)+z^{2} \ldots$

Single operator \rightarrow Single matrix element \rightarrow Different observables (What?!)

Ioffe-time distribution (ITD) [V.Braun,at al, 9410318]

$$
\begin{equation*}
\langle p| \bar{q}(z) \gamma^{\mu}[z, 0] q(0)|p\rangle=2 p^{\mu} \mathcal{M}\left((p z), z^{2}\right)+2 z^{\mu} \mathcal{N}\left((p z), z^{2}\right) \tag{9}
\end{equation*}
$$

Parton distirbution function (PDF)

$$
\begin{equation*}
f_{1}(x)=\int \frac{d(p z)}{2 \pi} e^{-i x(p z)} \mathcal{M}\left((p z), z^{2}=0\right) \tag{10}
\end{equation*}
$$

Single operator \rightarrow Single matrix element \rightarrow Different observables (What?!)

Ioffe-time distribution (ITD) [V.Braun,at al, 9410318]

$$
\begin{equation*}
\langle p| \bar{q}(z) \gamma^{\mu}[z, 0] q(0)|p\rangle=2 p^{\mu} \mathcal{M}\left((p z), z^{2}\right)+2 z^{\mu} \mathcal{N}\left((p z), z^{2}\right) \tag{9}
\end{equation*}
$$

Parton distirbution function (PDF)

$$
\begin{equation*}
f_{1}(x)=\int \frac{d(p z)}{2 \pi} e^{-i x(p z)} \mathcal{M}\left((p z), z^{2}=0\right) \tag{10}
\end{equation*}
$$

Pseudo-parton distribution function pseudoPDF [A.Radyuskin, 17]

$$
\begin{equation*}
P\left(x, z^{2}\right)=|z| \int_{-\infty}^{\infty} \frac{d(p v)}{2 \pi} e^{-i x|z|(p v)} \mathcal{M}\left((p z), z^{2}\right) \tag{11}
\end{equation*}
$$

Universităt Regensburg

Single operator \rightarrow Single matrix element \rightarrow Different observables (What?!)

Ioffe-time distribution (ITD) [V.Braun,at al, 9410318]

$$
\begin{equation*}
\langle p| \bar{q}(z) \gamma^{\mu}[z, 0] q(0)|p\rangle=2 p^{\mu} \mathcal{M}\left((p z), z^{2}\right)+2 z^{\mu} \mathcal{N}\left((p z), z^{2}\right) \tag{9}
\end{equation*}
$$

Parton distirbution function (PDF)

$$
\begin{equation*}
f_{1}(x)=\int \frac{d(p z)}{2 \pi} e^{-i x(p z)} \mathcal{M}\left((p z), z^{2}=0\right) \tag{10}
\end{equation*}
$$

Pseudo-parton distribution function pseudoPDF [A.Radyuskin, 17]

$$
\begin{equation*}
P\left(x, z^{2}\right)=|z| \int_{-\infty}^{\infty} \frac{d(p v)}{2 \pi} e^{-i x|z|(p v)} \mathcal{M}\left((p z), z^{2}\right) \tag{11}
\end{equation*}
$$

Quasi-parton distribution function quasiPDF [X.Ji,et al,14]

$$
\begin{equation*}
\tilde{Q}\left(x,|p|^{2}\right)=|p| \int_{-\infty}^{\infty} \frac{d(v z)}{2 \pi} e^{-i x|p|(v z)} \mathcal{M}\left((p z), z^{2}\right) \tag{12}
\end{equation*}
$$

Theory-wise quasiPDF and pseudoPDF are same.
But practically there is a lot of difference

$$
\begin{aligned}
P\left(x, z^{2}\right) & =|z| \int_{-\infty}^{\infty} \frac{d(p v)}{2 \pi} e^{-i x|z|(p v)} \mathcal{M}\left((p z), z^{2}\right) \\
\tilde{Q}\left(x,|p|^{2}\right) & =|p| \int_{-\infty}^{\infty} \frac{d(v z)}{2 \pi} e^{-i x|p|(v z)} \mathcal{M}\left((p z), z^{2}\right)
\end{aligned}
$$

The problem is power corrections

- If $p_{z} \rightarrow \infty$ both pictures coincides
- pseudo-PDF preserves structure of "original" power expansion
- quasi-PDF mixes terms "original" power expansion

Universităt Regensburg

Role of the large momentum

$$
\begin{aligned}
\bar{q}(z) \gamma^{\mu}[z, 0] q(0) & =\int_{0}^{1} d u \frac{\partial}{\partial z^{\mu}} \underbrace{\bar{q}(u z) \not \vDash[u z, 0] q(0)}_{\text {tw-2 }}\left(1+\alpha_{s} \ldots\right)+z^{2}[\mathrm{tw}-3 / 4]+\ldots \\
\langle p| \bar{q}(z) \gamma^{\mu}[z, 0] q(0)|p\rangle & =2 p^{\mu} \int_{-1}^{1} d x e^{i x(p z)} \underbrace{f_{1}(x, x(p v))}_{\text {PDF }}\left(1+\alpha_{s} \ldots\right)+z^{2}[\mathrm{tw}-2 / 3 / 4]+\ldots
\end{aligned}
$$

Role of the large momentum

$$
\begin{aligned}
\bar{q}(z) \gamma^{\mu}[z, 0] q(0) & =\int_{0}^{1} d u \frac{\partial}{\partial z^{\mu}} \underbrace{\bar{q}(u z) \not \not \subset[u z, 0] q(0)}_{\text {tw-2 }}\left(1+\alpha_{s} \ldots\right)+z^{2}[\mathrm{tw}-3 / 4]+\ldots \\
\langle p| \bar{q}(z) \gamma^{\mu}[z, 0] q(0)|p\rangle & =2 p^{\mu} \int_{-1}^{1} d x e^{i x(p z)} \underbrace{f_{1}(x, x(p v))}_{\text {PDF }}\left(1+\alpha_{s} \ldots\right)+z^{2}[\mathrm{tw}-2 / 3 / 4]+\ldots
\end{aligned}
$$

smaller $x(p v)$

larger $x(p v)$

Larger $(p v)=$ smoother asymptotic $z^{2} \rightarrow 0$.

How important power corrections?
[V.Braun,AV,J.H.Zhang,1810.00048]

PseudoPDF

$P\left(x, z^{2}\right)=f(x)\left(1+v^{2} z^{2} \Lambda^{2} R_{P}(x)\right)$

QuasiPDF

$Q\left(x,(p v)^{2}\right)=f(x)\left(1-\frac{v^{2} \Lambda^{2}}{x^{2} \bar{x}(p v)^{2}} R_{Q}(x)\right)$

Life is not so simple..

Topics that I left

- Perturbative computations (some already computed at NNLO!).
- Renomalization (linear divergences)
- Normalization (infinitely many ways, some cases effectively clean-out power corrections)
- Higher twist observables (very new and hot topic)
- Correlation of different operators (often much simple to measure on lattice. Smaller noise!)

Why measurement of PDFs on lattice is interesting?

In foreseen future lattice cannot compete with experiment in PDF-measurements

- Maximum $P \sim 2-3 \mathrm{GeV}$
- Only connected contributions (non-singlet PDF), no gluons..
- Almost unknown systematics
[picture by J.Karpie]

umversităt Regensburg

In foreseen future lattice cannot compete with experiment in PDF-measurements

- Maximum $P \sim 2-3 \mathrm{GeV}$
- Only connected contributions (non-singlet PDF), no gluons..
- Almost unknown systematics

But lattice has access to physically unmeasurable PDFs

- Higher twist PDFs
- "Exotic states" (kaon PDFs)
- "Exotic regimes" $H(x, x)$
- etc.
[picture by K.Cichy]

Universitãt Regensburg

Part-2:

transverse momentum dependent (TMD) distributions on lattice

$$
\text { TMD factorization } \neq \text { collinear factorization }
$$

- It could not be related to local OPE
however [V.Moos, AV;2008.01744]
- It deals with different type of divergences
- More degrees of freedom

Universitãt Regensburg

Light-cone OPE via background field method

e.g.[Abbott, $81 ;$ Braun, Balitsky, $89, .$.

$$
\langle p| O|p\rangle=\mathcal{N}^{-1} \int D \bar{q} D q D A e^{i S_{Q C D}} \bar{\Psi}[\bar{q}, q, A] O[\bar{q}, q, A] \Psi[\bar{q}, q, A]
$$

Let me assume that accelerated hadron is made of the fields that move collinearly

$$
\begin{gathered}
\Psi[\bar{q}, q, A] \rightarrow \Psi\left[\bar{q}_{c}, q_{c}, A_{c}\right], \quad \partial_{\mu} q_{c} \sim\left\{1, \lambda^{2}, \lambda\right\} \\
q=q_{c}+q_{h}, \quad A=A_{c}+A_{h} \\
D q \rightarrow D q_{c} D q_{h}, \quad D A=D A_{c} D A_{h}
\end{gathered}
$$

Light-cone OPE via background field method

e.g.[Abbott, $81 ;$ Braun, Balitsky, $89, .$.]

$$
\langle p| O|p\rangle=\mathcal{N}^{-1} \int D \bar{q} D q D A e^{i S_{Q C D}} \bar{\Psi}[\bar{q}, q, A] O[\bar{q}, q, A] \Psi[\bar{q}, q, A]
$$

Integrate over fast components

$$
\begin{aligned}
\langle p| O|p\rangle & =\mathcal{N}^{-1} \int D \bar{q} D q D A e^{i S_{Q C D}} \bar{\Psi}[\bar{q}, q, A] O^{\text {eff }}[\bar{q}, q, A] \Psi[\bar{q}, q, A] \\
O^{\text {eff }}[\bar{q}, q, A] & =\mathcal{N}^{-1} \int D \bar{q}_{h} D q_{h} D A_{h} e^{i S_{Q C D}^{h}+i S_{Q C D}^{b a c k}} O^{\text {eff }}\left[\bar{q}+\bar{q}_{h}, q+q_{h}, A+A_{h}\right] \\
& =\underbrace{\sum_{n} C_{n} \otimes O_{n}[\bar{q}, q, A]}
\end{aligned} O_{n} \sim \lambda^{n}
$$

The simplest way to deal with OPE for power suppressed terms

In TMD factorization one considers two oppositely moving hadrons

$$
p+p \rightarrow \gamma+X
$$

$$
\left\langle p_{1}, p_{2}\right| O\left|p_{1}, p_{2}\right\rangle=\mathcal{N}^{-1} \int D \bar{q} D q D A e^{i S_{Q C D}} \bar{\Psi}_{1} \bar{\Psi}_{2} O[\bar{q}, q, A] \Psi_{1} \Psi_{2}
$$

Each hadron is made of the fields that move collinearly

$$
\begin{array}{ll}
\Psi_{1}[\bar{q}, q, A] \rightarrow \Psi_{1}\left[\bar{q}_{c}, q_{c}, A_{c}\right], & \partial_{\mu} q_{c} \sim\left\{1, \lambda^{2}, \lambda\right\} \\
\Psi_{2}[\bar{q}, q, A] \rightarrow \Psi_{2}\left[\bar{q}_{\bar{c}}, q_{\bar{c}}, A_{\bar{c}}\right], & \partial_{\mu} q_{\bar{c}} \sim\left\{\lambda^{2}, 1, \lambda\right\}
\end{array}
$$

Double counting in the "soft" region $\left\{\lambda^{2}, \lambda^{2}, \lambda\right\}$
To solve this issue \rightarrow introduce extra "soft" modes and subtract them (complicated story)

In TMD factorization in background formulation
[I.Balitsky,18;AV,in prep.] disclaimer: no strict proof, but it works for known cases

$$
\begin{gathered}
\left\langle p_{1}, p_{2}\right| O\left|p_{1}, p_{2}\right\rangle=\int[D \bar{q} D q D A] e^{i S_{Q C D}} \bar{\Psi}_{1} O_{1}^{\mathrm{eff}} \Psi_{1} \times \mathcal{S} \times \int[D \bar{q} D q D A] e^{i S_{Q C D}} \bar{\Psi}_{2} O_{2}^{\mathrm{eff}} \Psi_{2} \\
O_{1}^{\mathrm{eff}} \mathcal{S} O_{2}^{\mathrm{eff}}=\frac{\int[D \bar{q} D q D A] e^{i S_{Q C D}+i S_{Q C D}^{b a c k}} O\left[q_{h}+q_{c}+q_{\bar{c}}+q_{s}, . .\right]}{\left(\int[D \bar{q} D q D A] e^{i S_{Q C D}+i S_{Q C D}^{b a c k}} O\left[q_{h}+q_{s}, . .\right]\right)^{2}}
\end{gathered}
$$

Universitãt Regensburg

TMD operator vs. PDF operator

"New" type of divergences \rightarrow rapidity divergences

TMDD operator

Universitãt Regensburg

TMD operator vs. PDF operator

"New" type of divergences \rightarrow rapidity divergences

Universităt Regensburg

TMD operator vs. PDF operator

"New" type of divergences \rightarrow rapidity divergences

Collins-Soper kernel

$$
\frac{d O_{\mathrm{TMD}}(b ; \mu, \zeta)}{d \ln \mu}=\gamma_{F}(\mu, \zeta) O_{\mathrm{TMD}}(b ; \mu, \zeta) \quad \frac{d O_{\mathrm{TMD}}(b ; \mu, \zeta)}{d \ln \zeta}=-\mathcal{D}(b, \mu) O_{\mathrm{TMD}}(b ; \mu, \zeta)
$$

Phenomenological extractions

- CS-kernel dictates evolution for TMD distribution
- Is a non-perturbative function
- Perturbative at small-b (known to NNLO=three-loops)
- Describes QCD vacuum properties [AV;2003.02288]
- Extracted from data

Constructing TMD-sensitive observable suitable for lattice

Restrictions on observable

- Equal-time
- With transverse size $(b P)=0$
- With anti-collinear modes

Simplest case:

$$
\begin{align*}
W_{f \leftarrow h}^{[\Gamma]}(b ; \ell, L ; v, P, S)= & \frac{1}{2}\langle P, S| \bar{q}_{f}(b+\ell v) \Gamma \tag{1}\\
& \times[b+\ell v, b+L v][b+L v, L v][L v, 0] q_{f}(0)|P, S\rangle
\end{align*}
$$

$\Gamma=$ some Dirac structure

Constructing TMD-sensitive observable suitable for lattice

Restrictions on observable

- Equal-time
- With transverse size $(b P)=0$
- With anti-collinear modes

Simplest case:

$$
\begin{aligned}
W_{f \leftarrow h}^{[\Gamma]}(b ; \ell, L ; v, & P, S)=\frac{1}{2}\langle P, S| \bar{q}_{f}(b+\ell v) \Gamma \\
& \times[b+\ell v, b+L v][b+L v, L v][L v, 0] q_{f}(0)|P, S\rangle
\end{aligned}
$$

$\Gamma=$ some Dirac structure

It is like DIS + (instant) jet

$$
\begin{aligned}
\text { At } L \rightarrow \infty \quad[0, L v] \rightarrow H(0) \quad\left(\text { with } \mathcal{L}_{H H}\right. & \left.=H^{\dagger}(i v D) H\right) \\
\text { current } J_{i}(x) & =H^{\dagger}(x) q(x), \quad \text { hadron tensor } W_{i j}
\end{aligned}=\langle P| J_{i}^{\dagger}(x) J_{j}(0)|P\rangle
$$

Factorization is (almost) equivalent to factorization of SIDIS or DY

Factorization is (almost) equivalent to factorization of SIDIS or DY

Negelecting power corrections and accounting the overlap in the soft modes

$$
W_{f \leftarrow h}^{[\Gamma]}(b ; \ell, L ; v, P, S)=\left|C_{H}(\hat{p} v)\right|^{2} \widetilde{\Phi}_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}\left(b, \ell v^{-} ; P, S\right) \widetilde{\Psi}\left(b, \ell v^{+} ; v\right) \frac{S(b)}{\mathrm{Z} . \mathrm{b}}
$$

Factorization is (almost) equivalent to factorization of SIDIS or DY

Negelecting power corrections and accounting the overlap in the soft modes

$$
W_{f \leftarrow h}^{[\Gamma]}(b ; \ell, L ; v, P, S)=\left|C_{H}(\hat{p v})\right|^{2} \widetilde{\Phi}_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}\left(b, \ell v^{-} ; P, S\right) \widetilde{\Psi}\left(b, \ell v^{+} ; v\right) \frac{S(b)}{\text { Z.b. }}
$$

Sources and sizes of power corrections

$W^{[\Gamma]}=\left|C_{H}\left(\frac{\hat{p} v}{\mu}\right)\right|^{2} \Phi^{\left[\Gamma^{\prime}\right]}\left(b, \ell v^{-} ; \mu, \zeta ; P, S\right) \Psi(b ; \mu, \bar{\zeta} ; v) \quad$ + power corrections

- $\frac{P^{-}}{x^{2} P^{+}}$and $\frac{\ell}{L}$ from collinear/anti-collinear modes separation
- $\frac{1}{x|b| P^{+}}$from collinear/transverse modes separation
- $\frac{b}{L}$ from anti-collinear/transverse modes separation
- $\ell \Lambda_{\mathrm{QCD}}$ to remove ℓ-dependence from Ψ

Factorization limit: $L \rightarrow \infty, P^{+} \rightarrow \infty, b$-fixed(non-zero), ℓ-fixed(also zero).
No need for Fourier transform!
$\Psi(b ; \mu, \bar{\zeta} ; v)$ is generally unknown (see however X.Ji, Liu,Liu, 2019)
It cancels in the ratios with same b.
If the same $v, \ell L$ are taken the Wilson-line renormalization factor also cancel.

$$
\begin{aligned}
R & =\frac{W_{f_{1} \leftarrow h_{1}}^{\left[\Gamma_{1}\right]}\left(b ; \ell, L, v ; P_{1}, S_{1} ; \mu\right)}{W_{f_{2} \leftarrow h_{2}}^{\left[\Gamma_{2}\right]}\left(b ; \ell, L, v ; P_{2}, S_{2} ; \mu\right)} \\
& =\frac{\left|C_{H}\left(\frac{\hat{p} v}{\mu}\right)\right|^{2} \Phi_{f_{1} \leftarrow h_{1}}^{\left[\Gamma_{1}^{\prime}\right]}\left(b, \ell v^{-} ; \mu, \zeta ; P_{1}, S_{1}\right)}{\left|C_{H}\left(\frac{\hat{p} v}{\mu}\right)\right|^{2} \Phi_{f_{2} \leftarrow h_{2}}^{\left[\Gamma_{2}^{\prime}\right]}\left(b, \ell v^{-} ; \mu, \zeta ; P_{2}, S_{2}\right)}+\text { power corrections }
\end{aligned}
$$

Plenty of information/tests

- Test power corrections! E.g. $\Gamma_{1}=\gamma^{-}$and $\Gamma_{2}=\gamma^{+}$then $R=$ power corrections
- Extract moments of TMDs
- Collins-Soper kernel

Extraction of Collins-Soper kernel \mathcal{D}
Ratio at different $P_{1,2}$ and rest all the same
[Ebert,Stewart, Zhao,1811.00026] [Schäfer,AV,2002.07527]

To facilitate cancellation set $\ell=0$
$R_{P_{1} / P_{2}}=\left(\frac{P_{2}^{+}}{P_{1}^{+}}\right)^{2 \mathcal{D}(b, \mu)+1} \frac{\int d x\left|C_{H}\left(\frac{x v^{-} P_{1}^{+}}{\mu}\right)\right|^{2} \Phi_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}(x, b)|x|^{-2 \mathcal{D}(b, \mu)}}{\int d x\left|C_{H}\left(\frac{x v^{-} P_{2}^{+}}{\mu}\right)\right|^{2} \Phi_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}(x, b)|x|^{-2 \mathcal{D}(b, \mu)}}+$ power corr.

TMDs do not cancel only due to perturbative logarithms (here $\mu=2\left|v^{-}\right| \sqrt{P_{1}^{+} P_{2}^{+}}$)

$$
\begin{aligned}
& R_{P_{1} / P_{2}}(\ell=0)=\left(\frac{P_{2}^{+}}{P_{1}^{+}}\right)^{2 \mathcal{D}(b, \mu)+1} \mathbf{r}+\text { power corrections } \\
& \mathbf{r}=1+4 C_{F} \frac{\alpha_{s}(\mu)}{4 \pi} \ln \left(\frac{P_{1}^{+}}{P_{2}^{+}}\right)\left[1-2 M_{\ln |x|}^{\Gamma}(b, \mu)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

$$
M_{\ln |x|}^{\Gamma}(b, \mu)=\frac{\int d x \ln |x||x|^{-2 \mathcal{D}+1} \Phi^{[\Gamma]}(x, b)}{\int d x|x|^{-2 \mathcal{D}+1} \Phi^{[\Gamma]}(x, b)}
$$

M constant (in b) lets determine it on the lattice

- Various convigurations
- Roughly ($\pm 50 \%$) agrees with phenomenology
- Also contains part of power correction!

Collins-Soper kernel on lattice

PRELIMINARY RESULT

ERROR BARS INCLUDE SYSTEMATICS

Conclusion

(General)Theory background is absolutely solid

- Factorization theorem is the operator statement

Real life

- There are plenty of "technical" problems (small P, normalization, lattice noise, etc.)
- Not all "definitions" equally good (e.g. quasiPDF vs. pseudoPDF)

Nonetheless, I am sure that lattice can/must/will greatly contribute to the understanding of parton picture

Universitát Regensburg

