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Intrinsic hadron structure is (probably) the most complicated topic in the QFT.
It is essentially non-perturbative (con�nement!)

There are several method to study hadrons insides,
parton distributions is only one of them, but it is the one which is most well-known

and well-explored

��� PDFs, FFs, DAs, TMDs, GPDs, jetF, ... ���
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All these objects are arti�cial, but they could be obtained from the data by means
of factorization theorems.

Factorization theorem is a statement of the form:

Observable=
(
perturbative

)
×
(
non-perturbative

)
+ suppressed terms

[Drell, Yan,70]

↓ ↓ ↓ ↓ ↓
[today's arxiv]
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All these objects are arti�cial, but they could be obtained from the data by means
of factorization theorems.

Factorization theorem is a statement of the form:

Observable=
(
perturbative

)
×
(
non-perturbative

)
+ suppressed terms

Collinear factorization

I Theorem!

I Describes many �1D�
observables

I Structure is
understood at all levels

I PDFs, DAs, GPDs,
FFs

TMD(-like) factorization

I Almost theorem

I Describes (some) 2D
observables

I There are holes...

I TMDPDFs, TMDFFs

Naive factorization

I Model assumption

I Applied everywhere

I Often works very-well

I Jets, MC-generators, ...

I will try to explain basics of collinear and TMD factorization ⇒ lattice observables
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Part-1:

collinear parton distributions

on lattice
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Note on terminology

Collinear factorization is about asymptotic behavior of operators.
The main tool is Operator Product Expansion (OPE)

[Wilson,Zimmermann,71]

but in a much wider sense
The operators on LHS are generally non-local
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Collinear factorization ←→ light-cone OPE

Collinear factorization is a statement about operator

O(z) =
∑
n

(z2)n
∑
k

Ckn(z)Okn(z)

Some 1D operator
DIS→ Jµ(z)Jν(0)

Full set of
�lower-dimension� operators

Coe�cient functions

Jµ(z)Jν(0) =
C0

z6
+ C1

q̄(z) 6zq(0)

z4
+ ...

I Divergences of cancel between coe�cient functions and
operators

I Physically interesting to consider not a local limit
(Wilson-Zimmermann OPE) zµ → 0, but z2 → 0

I Gives rise to the notion of twist
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Collinear factorization ←→ light-cone OPE

Collinear factorization is a statement about operator

ZoO(z, µ)︸ ︷︷ ︸ =
∑
n

(z2)n
∑
k

ZoCkn(z, µ, µF )Z−1
C︸ ︷︷ ︸

Cnk(z,µ,µF )

ZCOkn(z, µF )︸ ︷︷ ︸

I Divergences of cancel between coe�cient functions and
operators
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Di�erence between local and light-cone expansion

DIS : Wµν(q, p) ∼
∫
d4zeiqz〈p|Jµ(z)Jν(0)|p〉

Bjorken limit: Q2 � p2, (pq) ∼ Q2 (x = �xed)

1. Expanding operator:

∫
d4zeiqz〈p|

∑
zµ1 ...zµn Cn ⊗Oµ1...µn (0)|p〉

2. Rearranging:

(∫
d4zeiqz

∑
zµ1 ...zµn Cn

)
⊗ 〈p|Oµ1...µn (0)|p〉

3. Evaluating:

(
qµ1 ...qµn

[Q2]n+2
+ ..+

qµ1 ..gµiµj ..qµn

[Q2]n+1
+ ...

)
Cn ⊗ fn pµ1 ...pµn

4. Contracting:
1

Q4

(
x−n + ..+ x−n−2 p

2

Q2
+ ...

)
Cn ⊗ fn

The leading term is given by symmetric traceless part of the operator
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In DIS the leading term is given by a collection of terms
These terms are characterized by a quantum number �twist�

twist=dimension-spin

q̄γµ∂νq = q̄

(
γµ∂ν + γν∂µ

2
− gµν 6∂

)
q︸ ︷︷ ︸

tw-2

+ q̄

(
γµ∂ν − γν∂µ

2

)
q︸ ︷︷ ︸

tw-3

+gµν q̄ 6∂q︸︷︷︸
tw-4

(1)

Each operator can be decomposed into components with de�nite twist

Oµ1...µn =
∑
tw

Aµ1...µn
tw;ν1...νn

Oν1...νntw

In fact, it is a decomposition over irreducible representations of Lorentz-group

I Operators with di�erent twist do not mix with each other (irreducible Lorentz
representation)
I Preserved by evolution!

I Twist 6= power
I Indeed, in DIS, at Q−n appear only operators with twist < n
I Possible kinematical factors

I Equation of motions!
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Back to non-local de�nition!

The sum over n and twist-decomposition commutes!∑
n

zµ1 ...zµnOtw-nµ1...µn
= z2[n/2]Otw-n(z)

I Also for quantum operators [Anikin,Zavyalov,78]

Light-cone OPE:

O(z) =
∑
n

z2[n/2]Ctw−n ⊗Otw-n(z)

Here, operator does not have z2-contribution ⇒ light-cone
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Light-cone without light-cone:

it is essential to realize that (the function is independent on z2) 6= f(z2 = 0)

Famous and important example:

q̄(z)γµq(0) =

∫ 1

0
du

∂

∂zµ
q̄(uz) 6zq(0)︸ ︷︷ ︸

tw-2

+

∫ 1

0
du

∫ u

0
dvzν q̄(uz) 6zFµν(vz)q(0) + ...︸ ︷︷ ︸

tw-3

+z2...

Hint: integrate by parts, and expand at zµ → 0.

q̄(z) 6zq(0) = twist-2 + z2twist-4
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Common terminology: light-cone decomposition

vµ = nµv− + n̄µv+ + vµT

n2 = n̄2 = 0, (nn̄) = 1, (nvT ) = (n̄vT ) = 0.

I
nµ = {1, 0, 0, 1}/

√
2

n̄µ = {1, 0, 0,−1}/
√

2

I Hadron momentum (p2 = m2)

pµ = n̄µp+ + nµ
m2

2p+

p+ � p−
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Some examples

twist-2→ q̄(nz+)γ+q(0) (1)

twist-3→ q̄(nz+)q(0) ∼
∫
q̄σµ+Fµ+q(0) (2)

inde�nite→ q̄(nz+)γµq(0) ∼ n̄µ q̄(nz+)γ+q(0)︸ ︷︷ ︸
tw-2

+ q̄(nz+)γµT q(0)︸ ︷︷ ︸
q̄γ+Fµ+q=tw-3

+nµ q̄(nz+)γ−q(0)︸ ︷︷ ︸
tw-4

(3)

tw-3→ q̄(nz+)γ+∂µT q(0) (4)

tot.der.tw-2→ ∂µ{q̄(nz+)γ+q(0)
tw-2
} (5)

Don't be confused by modern terminology!

I Geometrical twist ≡ �dimension - spin �

I Collinear twist ∼ �dimension�

I Dynamical twist ∼ power of Q2 in structure function

I Conformal twist

I TMD twist

I ...
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Same OPE → di�erent observables

OPE is unique expression

Jµ(x)Jν(0) = −
xµgνα + xνgµα − xαgµν

(4π)2x4

∫
dyK(x, y, αs)[q̄(y)γαq(0)] + ...

Deep inelastic scattering (DIS) e+ p→ e+X

dσ ∼ LµνWµν = Lµν

∫
ei(qz)〈p|Jµ(z)Jν(0)|p〉

Meson production γ∗ + γ∗ → η

A = eµeν

∫
ei((q1+q2)z)〈0|Jµ(z)Jν(0)|p〉

Deeply virtual Compton Scattering (DVCS) γ∗ + p→ γ + p

A = eµeν

∫
ei((q1+q2)z)〈p′|Jµ(z)Jν(0)|p〉
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Single operator → di�erent matrix elements → di�erent observables

O(z) = q̄(z) 6zq(0)|tw-2

Parton distribution function (PDF)

〈p|O(z)|p〉 = 2(pz)

∫
dxeix(pz)f1(x) (6)

Distribution amplitude (DA)

〈0|O(z)|p〉 = 2(pz)

∫
dxeix(pz)ϕ(x) (7)

Generalized parton distribution

〈p|O(z)|p′〉 = 2(pz)

∫
dxdξei(x+ξ)(pz)+i(x−ξ)(pz)H(x, ξ)(8)

+ Generalized distribution amplitudes
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How to measure parton distributions on lattice?

In principle...

I If we would be able to study the hadron-to-hadron expectation value of
any reasonable non-local operator at z2 → 0 in that would give us information about
PDFs.

I It does not matter which direction is z. It also could be zµ = n̂µ3 z

I Realized long ago
[V.Braun, P.Gornicki, L.Mankiewicz, 94], [P.Hoyer,M.Vanttinen,96] ...
[V.Braun,D.Muller,06]

Ji's paper

I Xiangdong Ji, Phys.Rev.Lett. 110 (2013) → explosion of works

Simplest operators is PDF operator it-self!
Oµ(z) = q̄(z)[z, 0]γµq(0)
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Single operator → Single matrix element → Di�erent observables (What?!)

Io�e-time distribution (ITD) [V.Braun,at al, 9410318]

〈p|q̄(z)γµ[z, 0]q(0)|p〉 = 2pµM((pz), z2) + 2zµN ((pz), z2) (9)

I That is what measured on the lattice .
I M∼ (twist− 2) + z2...
I N ∼ (twist− 2/4) + z2...

Parton distirbution function (PDF)

f1(x) =

∫
d(pz)

2π
e−ix(pz)M((pz), z2 = 0) (10)

Pseudo-parton distribution function pseudoPDF [A.Radyuskin,17]

P (x, z2) = |z|
∫ ∞
−∞

d(pv)

2π
e−ix|z|(pv)M((pz), z2) (11)

Quasi-parton distribution function quasiPDF [X.Ji,et al,14]

Q̃(x, |p|2) = |p|
∫ ∞
−∞

d(vz)

2π
e−ix|p|(vz)M((pz), z2) (12)
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Theory-wise quasiPDF and pseudoPDF are same.
But practically there is a lot of di�erence

P (x, z2) = |z|
∫ ∞
−∞

d(pv)

2π
e−ix|z|(pv)M((pz), z2)

Q̃(x, |p|2) = |p|
∫ ∞
−∞

d(vz)

2π
e−ix|p|(vz)M((pz), z2)

The problem is power corrections

I If pz →∞ both pictures coincides

I pseudo-PDF preserves structure of
�original� power expansion

I quasi-PDF mixes terms �original� power
expansion

[picture by J.Karpie]
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Role of the large momentum

q̄(z)γµ[z, 0]q(0) =

∫ 1

0
du

∂

∂zµ
q̄(uz) 6z[uz, 0]q(0)︸ ︷︷ ︸

tw-2

(1 + αs...) + z2[tw-3/4] + ...

〈p|q̄(z)γµ[z, 0]q(0)|p〉 = 2pµ
∫ 1

−1
dxeix(pz) f1(x, x(pv))︸ ︷︷ ︸

PDF

(1 + αs...) + z2[tw-2/3/4] + ...

Λ−1

Λ/(x(pv))

smaller x(pv)

Λ−1

larger x(pv)

Λ−1

Larger (pv) = smoother asymptotic z2 → 0.
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How important power corrections?

[V.Braun,AV,J.H.Zhang,1810.00048]

PseudoPDF

P (x, z2) = f(x)
(
1 + v2z2Λ2RP (x)

)
QuasiPDF

Q(x, (pv)2) = f(x)

(
1−

v2Λ2

x2x̄(pv)2
RQ(x)

)
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Life is not so simple..

Topics that I left

I Perturbative computations (some already computed at NNLO!).

I Renomalization (linear divergences)

I Normalization (in�nitely many ways, some cases e�ectively clean-out power corrections)

I Higher twist observables (very new and hot topic)

I Correlation of di�erent operators (often much simple to measure on lattice. Smaller
noise!)

I ...
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Why measurement of PDFs on lattice is interesting?

In foreseen future lattice cannot compete with experiment in PDF-measurements

I Maximum P ∼ 2− 3GeV

I Only connected contributions (non-singlet PDF), no gluons..

I Almost unknown systematics

[picture by J.Karpie]
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But lattice has access to physically unmeasurable PDFs

I Higher twist PDFs

I �Exotic states� (kaon PDFs)

I �Exotic regimes� H(x, x)

I etc.

[picture by K.Cichy]
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Part-2:

transverse momentum dependent (TMD)

distributions on lattice
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TMD factorization 6= collinear factorization

I It could not be related to local OPE however [V.Moos,AV;2008.01744]

I It deals with di�erent type of divergences

I More degrees of freedom
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Light-cone OPE via background �eld method
e.g.[Abbott,81;Braun,Balitsky,89,..]

〈p|O|p〉 = N−1

∫
Dq̄DqDA eiSQCD Ψ̄[q̄, q, A] O[q̄, q, A] Ψ[q̄, q, A]

Let me assume that accelerated hadron is made of the �elds that
move collinearly

Ψ[q̄, q, A]→ Ψ[q̄c, qc, Ac], ∂µqc ∼ {1, λ2, λ}

q = qc + qh, A = Ac +Ah

Dq → DqcDqh, DA = DAcDAh
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〈p|O|p〉 = N−1

∫
Dq̄DqDA eiSQCD Ψ̄[q̄, q, A] O[q̄, q, A] Ψ[q̄, q, A]

Integrate over fast components

〈p|O|p〉 = N−1

∫
Dq̄DqDA eiSQCD Ψ̄[q̄, q, A] Oeff [q̄, q, A] Ψ[q̄, q, A]

Oeff [q̄, q, A] = N−1

∫
Dq̄hDqhDAh e

iShQCD+iSbackQCD Oeff [q̄ + q̄h, q + qh, A+Ah]

=
∑
n

Cn ⊗On[q̄, q, A]︸ ︷︷ ︸
light-cone OPE

On ∼ λn

The simplest way to deal with OPE for power suppressed terms
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In TMD factorization one considers two oppositely moving hadrons
p+ p→ γ +X

〈p1, p2|O|p1, p2〉 = N−1

∫
Dq̄DqDA eiSQCD Ψ̄1 Ψ̄2 O[q̄, q, A] Ψ1 Ψ2

Each hadron is made of the �elds that move collinearly

Ψ1[q̄, q, A]→ Ψ1[q̄c, qc, Ac], ∂µqc ∼ {1, λ2, λ}

Ψ2[q̄, q, A]→ Ψ2[q̄c̄, qc̄, Ac̄], ∂µqc̄ ∼ {λ2, 1, λ}

Double counting in the �soft� region {λ2, λ2, λ}

To solve this issue → introduce extra �soft� modes and subtract them (complicated story)
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In TMD factorization in background formulation
[I.Balitsky,18;AV,in prep.]

disclaimer: no strict proof, but it works for known cases

〈p1, p2|O|p1, p2〉 =

∫
[Dq̄DqDA] eiSQCD Ψ̄1O

e�
1 Ψ1 × S ×

∫
[Dq̄DqDA] eiSQCD Ψ̄2O

e�
2 Ψ2

Oe�1 SOe�2 =

∫
[Dq̄DqDA]eiSQCD+iSbackQCDO[qh + qc + qc̄ + qs, ..](∫

[Dq̄DqDA]e
iSQCD+iSback

QCDO[qh + qs, ..]
)2
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TMD operator vs. PDF operator
�New� type of divergences → rapidity divergences

TMD

operator

±∞n

±∞n+ b

0n

zn+ b

PDF

operator

0n zn

Ultraviolet (UV) divergences

Rapidity divergences

Rapidity divergences
are multiplicatively renormalizable

[AV,JHEP 1804 (2018)]

But the renormalization factor
contains non-perturbative element
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Collins-Soper kernel

dOTMD(b;µ, ζ)

d lnµ
= γF (µ, ζ)OTMD(b;µ, ζ)

dOTMD(b;µ, ζ)

d ln ζ
= −D(b, µ)OTMD(b;µ, ζ)

I CS-kernel dictates evolution for
TMD distribution

I Is a non-perturbative function

I Perturbative at small-b (known
to NNLO=three-loops)

I Describes QCD vacuum
properties [AV;2003.02288]

I Extracted from data

Phenomenological extractions

1 2 3 4 5

0.2

0.4

0.6
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Constructing TMD-sensitive observable suitable for lattice

Restrictions on observable

I Equal-time

I With transverse size (bP ) = 0

I With anti-collinear modes

Simplest case:

Γ = some Dirac structure

It is like DIS+(instant)jet

At L→∞ [0, Lv]→ H(0) (with LHH = H†(ivD)H)

current Ji(x) = H†(x)q(x), hadron tensor Wij = 〈P |J†i (x)Jj(0)|P 〉
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Factorization is (almost) equivalent to factorization of SIDIS or DY

0

`v + b

Γ
0

`v + b

0

`v + b

−n∞ −n∞

n̄∞ n̄∞

Negelecting power corrections and accounting the overlap in the soft modes

operator of parton's momentum (p̂ ∼ xP )
Fourier conjugated to `
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Sources and sizes of power corrections

W [Γ] = |CH
(
p̂v

µ

)
|2 Φ[Γ′](b, `v−;µ, ζ;P, S) Ψ(b;µ, ζ̄; v) + power corrections

I
P−

x2P+
and

`

L
from collinear/anti-collinear modes separation

I
1

x|b|P+
from collinear/transverse modes separation

I
b

L
from anti-collinear/transverse modes separation

I `ΛQCD to remove `-dependence from Ψ

Factorization limit: L→∞, P+ →∞, b-�xed(non-zero), `-�xed(also zero).
No need for Fourier transform!
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Ψ(b;µ, ζ̄; v) is generally unknown (see however X.Ji, Liu,Liu, 2019)
It cancels in the ratios with same b.

If the same v, ` L are taken the Wilson-line renormalization factor also cancel.

R =
W

[Γ1]
f1←h1

(b; `, L, v;P1, S1;µ)

W
[Γ2]
f2←h2

(b; `, L, v;P2, S2;µ)

=
|CH

(
p̂v
µ

)
|2 Φ

[Γ′1]

f1←h1
(b, `v−;µ, ζ;P1, S1)

|CH
(
p̂v
µ

)
|2 Φ

[Γ′2]

f2←h2
(b, `v−;µ, ζ;P2, S2)

+ power corrections

Plenty of information/tests

I Test power corrections! E.g. Γ1 = γ− and Γ2 = γ+ then R = power corrections

I Extract moments of TMDs

I ..

I Collins-Soper kernel
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Extraction of Collins-Soper kernel D
Ratio at di�erent P1,2 and rest all the same

[Ebert,Stewart,Zhao,1811.00026] [Schäfer,AV,2002.07527]

To facilitate cancellation set ` = 0

RP1/P2
=

(
P+

2

P+
1

)2D(b,µ)+1

∫
dx
∣∣∣CH

(
xv−P+

1

µ

)∣∣∣2Φ
[Γ′]
f←h(x, b)|x|−2D(b,µ)

∫
dx
∣∣∣CH

(
xv−P+

2

µ

)∣∣∣2Φ
[Γ′]
f←h(x, b)|x|−2D(b,µ)

+ power corr.

TMDs do not cancel only due to perturbative logarithms (here µ = 2|v−|
√
P+

1 P
+
2 )

RP1/P2
(` = 0) =

(
P+

2

P+
1

)2D(b,µ)+1

r + power corrections

r = 1 + 4CF
αs(µ)

4π
ln

(
P+

1

P+
2

)[
1− 2MΓ

ln |x|(b, µ)
]

+O(α2
s)
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Collins-Soper kernel on lattice

MΓ
ln |x|(b, µ) =

∫
dxln |x||x|−2D+1Φ[Γ](x, b)∫
dx|x|−2D+1Φ[Γ](x, b)

M constant (in b) lets determine it on the lattice

I Various convigurations

I Roughly (±50%) agrees with phenomenology

I Also contains part of power correction!
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Collins-Soper kernel on lattice

PRELIMINARY RESULT

ERROR BARS INCLUDE SYSTEMATICS
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Conclusion

(General)Theory background is absolutely solid

I Factorization theorem is the operator statement

Real life

I There are plenty of �technical� problems (small P , normalization, lattice noise, etc.)

I Not all �de�nitions� equally good (e.g. quasiPDF vs. pseudoPDF)

Nonetheless, I am sure that lattice can/must/will greatly contribute to
the understanding of parton picture

although may be not in straightforward way
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