Evolution of

transverse momentum dependent distributions

Alexey Vladimirov
Universität Regensburg

October 29, 2019
Mainz

Universitãt Regensburg

Introduction

The talk is a mini-review about

- transverse momentum dependent (TMD) factorization theorems,
- soft factors,
- rapidity divergences,
- rapidity anomalous dimension and TMD evolution,
- and its interpretation.

Plan of the talk

- introduction to TMD factorization,
- TMD soft factor and rapidity divergences,
- renormalization theorem for rapidity divergences,
- evolution equation and ζ-prescription
- comparison with the data
- interpretation of rapidity anomalous dimension

Transverse momentum dependent (TMD) factorization describes double-inclusive processes in the regime of small transverse momentum $\left(q_{T}^{2} \ll Q^{2}\right)$

$$
\begin{aligned}
\text { processes: } & h_{1}+h_{2} \rightarrow \gamma^{*} / Z / W+X \\
& h_{1}+\gamma^{*} \rightarrow h_{2}+X \\
& e^{+} e^{-} \rightarrow h_{1}+h_{2}+X
\end{aligned}
$$

"Drell-Yan"
semi-inclusive DIS (SIDIS)

TMD regime

The transverse momentum of photon q_{T} is determined with respect to "hadron plane"

In TMD regime the produced transverse momentum is mostly of "non-perturbative" origin: \Rightarrow TMD distributions (PDFs and FFs)

TMD distributions should not be mistaken with collinear distributions (although they have some common points).

- Structurally different: different divergences and different evolution.

Part I: TMD factorization

Universitāt Regensburg

Structure of TMD factorization

Universitāt Regensburg

Structure of TMD factorization

Reminder

Summation of soft gluon exchanges \Rightarrow Wilson lines

$$
[x, y]=P \exp \left(i g \int_{x}^{y} d z^{\mu} A_{\mu}(z)\right)
$$

Parallel transporter of a gluon field.

- Sums soft-exchanges between hadron and parton
- Presented in all elements of factorization theorems

Example: parton distribution function

$$
\left.\left.f(x)=\int \frac{d \lambda}{2 \pi} e^{i x p \lambda}\langle\text { hadron }| \bar{q}(\lambda n)[\lambda n, 0] q(0) \right\rvert\, \text { hadron }\right\rangle
$$

$$
\begin{gathered}
n^{2}=0 \\
\text { on light-cone }
\end{gathered}
$$

Universităt Regensburg

Reminder

Summation of soft gluon exchanges \Rightarrow Wilson lines

$$
[x, y]=P \exp \left(i g \int_{x}^{y} d z^{\mu} A_{\mu}(z)\right)
$$

Parallel transporter of a gluon field.

- Sums soft-exchanges between hadron and parton
- Presented in all elements of factorization theorems

Example: parton distribution function

$$
\left.\left.f(x)=\int \frac{d \lambda}{2 \pi} e^{i x p \lambda}\langle\text { hadron }| \bar{q}(\lambda n)[\lambda n, 0] q(0) \right\rvert\, \text { hadron }\right\rangle
$$

$$
\begin{gathered}
n^{2}=0 \\
\text { on light-cone }
\end{gathered}
$$

TMD factorization is full of (light-like) Wilson lines

$$
\frac{d \sigma}{d X} \simeq H(Q) \int \frac{d^{2} b}{(2 \pi)^{2}} e^{i(b k)_{T}} f\left(x_{A}, b\right) S(b) f\left(x_{B}, b\right)
$$

Universitât Regensburg

TMD factorization is full of (light-like) Wilson lines

$$
\frac{d \sigma}{d X} \simeq H(Q) \int \frac{d^{2} b}{(2 \pi)^{2}} e^{i(b k)_{T}} f\left(x_{A}, b\right) S(b) f\left(x_{B}, b\right)
$$

Universitãt Regensburg

TMD soft factor

$$
S\left(\mathbf{b}_{T}\right)=\langle 0| \operatorname{Tr}\left(\boldsymbol{\Phi}_{n}\left(\mathbf{0}_{T}\right) \boldsymbol{\Phi}_{n}^{\dagger}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-n}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\left(\mathbf{0}_{T}\right)\right)|0\rangle
$$

Light-like vectors:

$$
n^{2}=\bar{n}^{2}=0, \quad(n \cdot \bar{n})=1
$$

Wilson line (ray)

$$
\mathbf{\Phi}_{v}(x)=P \exp \left(i g \int_{0}^{\infty} d \sigma v^{\mu} A_{\mu}^{A}(v \sigma+x) \mathbf{T}^{A}\right)
$$

Looks simple, but SF is a theoretician's nightmare.
Multiple divergences!

TMD soft factor

$$
S\left(\mathbf{b}_{T}\right)=\langle 0| \operatorname{Tr}\left(\boldsymbol{\Phi}_{n}\left(\mathbf{0}_{T}\right) \boldsymbol{\Phi}_{n}^{\dagger}\left(\mathbf{b}_{T}\right) \mathbf{\Phi}_{-n}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\left(\mathbf{0}_{T}\right)\right)|0\rangle
$$

$$
\begin{aligned}
\int d x d y & D(x-y) \\
& =\quad \int_{0}^{\infty} d x^{+} \int_{0}^{\infty} d y^{-} \frac{1}{x^{+} y^{-}} \\
& =\int_{0}^{\infty} \frac{d x^{+}}{x^{+}} \int_{0}^{\infty} \frac{d y^{-}}{y^{-}} \\
& =(\mathrm{UV}+\mathrm{IR})(\mathrm{UV}+\mathrm{IR})
\end{aligned}
$$

Some people set it to zero.

TMD soft factor

$$
S\left(\mathbf{b}_{T}\right)=\langle 0| \operatorname{Tr}\left(\boldsymbol{\Phi}_{n}\left(\mathbf{0}_{T}\right) \boldsymbol{\Phi}_{n}^{\dagger}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-n}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\left(\mathbf{0}_{T}\right)\right)|0\rangle
$$

$$
\begin{aligned}
\int \quad d x d y & D(x-y) \\
& =\quad \int_{0}^{\infty} d x^{+} \int_{0}^{\infty} d y^{-} \frac{1}{\left(2 x^{+} y^{-}+\mathbf{b}_{T}^{2}\right)} \\
& =\quad \text { IR at } x, y \rightarrow \infty
\end{aligned}
$$

However, it exactly cancels IR from the previous diagram
IR-cancellation proved at all orders, e.g.[Echevarria,Scimemi,AV, 1511.05590]

TMD soft factor

Regularizations for rapidity divergences

- Rapidity divergences are not regularized by dim.reg.
- There are many regularizations:
- δ-regularization [Echevarria,Scimemi,AV,1511.05590],
- exponential-regularization [Li,Neill,Zhu,1604.00392],
- off-light-cone Wilson lines [Collins' textbook],
- analytical regularization [Chiu, et al,1104.0881],
- ...

The most important property of SF is that its logarithm is linear in $\ln \left(\delta^{+} \delta^{-}\right)$
(2-loop check [1511.05590])

$$
\begin{aligned}
& \quad S\left(b_{T}\right)=\exp \left(A\left(b_{T}, \epsilon\right) \ln \left(\delta^{+} \delta^{-}\right)+B\left(b_{T}, \epsilon\right)\right) \\
& \delta^{+(-)} \text {regularizes rap.div. in } n(\bar{n}) \text { direction, } \delta^{ \pm} \rightarrow 0
\end{aligned}
$$

- Important note 1: the structure holds for arbitrary ϵ
- Important note 2: the structure holds at all orders of PT [AV, 1707.07606]

Factorization of rapidity-divergences

$$
\begin{aligned}
& S\left(b_{T}\right)=\exp \left(A\left(b_{T}, \epsilon\right) \ln \left(\delta^{+} \delta^{-}\right)+B\left(b_{T}, \epsilon\right)\right) \\
& =\exp \left(\frac{A\left(b_{T}, \epsilon\right)}{2} \ln \left(\zeta^{+}\left(\delta^{+}\right)^{2}\right)+\frac{B\left(b_{T}, \epsilon\right)}{2}\right) \exp \left(\frac{A\left(b_{T}, \epsilon\right)}{2} \ln \left(\zeta^{-}\left(\delta^{-}\right)^{2}\right)+\frac{B\left(b_{T}, \epsilon\right)}{2}\right)
\end{aligned}
$$

Universităt Regensburg

Factorization of rapidity-divergences

$$
\begin{aligned}
& S\left(b_{T}\right)=\exp \left(A\left(b_{T}, \epsilon\right) \ln \left(\delta^{+} \delta^{-}\right)+B\left(b_{T}, \epsilon\right)\right) \\
& =\exp \left(\frac{A\left(b_{T}, \epsilon\right)}{2} \ln \left(\zeta^{+}\left(\delta^{+}\right)^{2}\right)+\frac{B\left(b_{T}, \epsilon\right)}{2}\right) \exp \left(\frac{A\left(b_{T}, \epsilon\right)}{2} \ln \left(\zeta^{-}\left(\delta^{-}\right)^{2}\right)+\frac{B\left(b_{T}, \epsilon\right)}{2}\right) \\
& \begin{array}{c}
\text { rap.div. } \\
\text { in } n \text {-direction }
\end{array} \\
& \begin{array}{c}
\text { rap.div. } \\
\text { in } \bar{n} \text {-direction }
\end{array}
\end{aligned}
$$

- The rapidity divergences related to different sectors factorize
- Factorization introduces an additional scales ζ : (here $\zeta^{+} \zeta^{-}=1$)
- The factorization of rapidity divergences in TMD soft-factor is a consequence of renormalization theorem for rapidity divergences.

Renormalization theorem for rapidity divergences.[AV, 1707.07606]

At any finite order of perturbation theory there exists the "rapidity divergence renormalization factor" \mathbf{R}_{n}, which contains only rapidity divergences associated with the direction n, such that the combination

$$
S^{R}\left(\{b\}, \zeta^{+}, \zeta^{-}\right)=\mathbf{R}_{n}\left(\{b\}, \zeta^{+}\right) S(\{b\}) \mathbf{R}_{\bar{n}}^{\dagger}\left(\{b\}, \zeta^{-}\right)
$$

is free of rapidity divergences.

Universitãt Regensburg

The essence of proof is the equivalence of rapidity divergences and ultraviolet divergences.

In conformal field theory

The essence of proof is the equivalence of rapidity divergences and ultraviolet divergences.

In conformal field theory

The essence of proof is the equivalence of rapidity divergences and ultraviolet divergences.

In conformal field theory

In CFT rapidity renormalization factor equals to UV renormalization

In QCD

The existence of renormalization can be proved order-by-order with iterations using

- Renormalization statement in CFT
- Conformal-invariance of QCD at tree-order.

Universitãt Regensburg

In QCD
The existence of renormalization can be proved order-by-order with iterations using

- Renormalization statement in CFT
- Conformal-invariance of QCD at tree-order.

What I did not discuss

- Factorization for Multi-Parton scattering
- All-order restrictions on the soft anomalous dimension
- Counting rules for rap.div., and definition of R^{\prime}-operation
- Overlap of rap.divs. and violation of factorization

Rapidity anomalous dimension

Similarly to UV renormalization the rapidity-divergence renormalization satisfies renormalization group equation with respect to rapidity divergence renormalization scale ζ. The scaling with ζ has anomalous dimension

$$
\mathcal{D}(b)=\frac{1}{2} \mathbf{R}^{-1}(b, \zeta) \frac{d}{d \ln \zeta} \mathbf{R}(b, \zeta)
$$

In literature, this object is known

- under different names: "non-perturbative Sudakov kernel", "CSS kernel", "rapidity anomalous dimension".
- under different letters $-K(b) / 2$ [Collins,et al], $F_{q \bar{q}}(b)$ [Becher,Neubert], γ_{ν}, \ldots

Universitãt Regensburg

Important consequence:
correspondence between soft- and rapidity-anomalous dimensions.

In conformal field theory

$$
\mathcal{D}(\mu, \mathbf{b})=\gamma_{s}\left(\mu,\left(v_{1} \cdot v_{2}\right)\right), \quad\left(v_{1} \cdot v_{2}\right)=\mathbf{b}^{2} e^{2 \gamma_{E}} / 4
$$

Checked by explicit calculation in $\mathcal{N}=4 \mathrm{SYM}$ [Li,Zhu,1604.01404]

Universitãt Regensburg

Important consequence: correspondence between soft- and rapidity-anomalous dimensions.

In conformal field theory

$$
\mathcal{D}(\mu, \mathbf{b})=\gamma_{s}\left(\mu,\left(v_{1} \cdot v_{2}\right)\right), \quad\left(v_{1} \cdot v_{2}\right)=\mathbf{b}^{2} e^{2 \gamma_{E}} / 4
$$

Checked by explicit calculation in $\mathcal{N}=4 \mathrm{SYM}$ [Li,Zhu,1604.01404]

In QCD
In QCD the same relation holds at the critical point (e.g. $\epsilon^{*}=-\beta\left(a_{s}\right)$)

$$
\mathcal{D}\left(\mu, \mathbf{b} ; \epsilon^{*}\right)=\gamma_{s}\left(\mu,\left(v_{1} \cdot v_{2}\right)\right), \quad\left(v_{1} \cdot v_{2}\right)=\mathbf{b}^{2} e^{2 \gamma_{E}} / 4
$$

This relation allows one to gain β-function terms of higher-order from lower order [AV, 1610.05791].

Using this relation, one can derive 3-loop \mathcal{D} from 2-loop \mathcal{D} and 3-loop γ_{s}.

$$
\boldsymbol{\gamma}_{s}(\{v\})=2 \mathbf{D}\left(\{\mathbf{b}\}, \epsilon^{*}\right)
$$

How to use it?

- Physical value is $\mathbf{D}(\{\mathbf{b}\}, 0)$
- $\epsilon^{*}=0-a_{s} \beta_{0}-a_{s}^{2} \beta_{1}-a_{s}^{3} \beta_{2}-\ldots$
- We can compare order by order in PT

$$
\begin{aligned}
& \mathbf{D}_{1}(\{b\})=\frac{1}{2} \boldsymbol{\gamma}_{1}(\{v\}), \\
& \mathbf{D}_{2}(\{b\})=\frac{1}{2} \boldsymbol{\gamma}_{2}(\{v\})+\beta_{0} \mathbf{D}_{1}^{\prime}(\{b\}), \\
& \mathbf{D}_{3}(\{b\})=\frac{1}{2} \boldsymbol{\gamma}_{3}(\{v\})+\beta_{0} \mathbf{D}_{2}^{\prime}(\{b\})+\beta_{1} \mathbf{D}_{1}^{\prime}(\{b\})-\frac{\beta_{0}^{2}}{2} \mathbf{D}_{1}^{\prime \prime}(\{b\}),
\end{aligned}
$$

Universitãt Regensburg

TMD rapidity anomalous dimension

3-loop expression for RAD

$$
\begin{aligned}
\mathcal{D}_{1}\left(\mathbf{b}^{2}, \epsilon\right)= & -2 a_{s} C_{F}\left[\left(\frac{\mathbf{b}^{2}}{4}\right)^{\epsilon} \Gamma(-\epsilon)+\frac{1}{\epsilon}\right]=a_{s} C_{F}\{2 \mathbf{L}_{\mu}+\epsilon \underbrace{\left(\mathbf{L}_{\mu}^{2}+\zeta_{2}\right)}_{D_{1}^{\prime}}+\ldots\} \\
\mathcal{D}_{2}\left(\mathbf{b}^{2}, \epsilon\right)= & a_{s}^{2} C_{F}\left\{\boldsymbol { B } ^ { 2 \epsilon } \Gamma ^ { 2 } (- \epsilon) \left(C_{A}\left(2 \psi-2 \epsilon-2 \psi_{-\epsilon}+\psi_{\epsilon}+\gamma_{E}\right)\right.\right. \\
& \left.\left.+\frac{1-\epsilon}{(1-2 \epsilon)(3-2 \epsilon)}\left(\frac{3(4-3 \epsilon)}{2 \epsilon} C_{A}-N_{f}\right)\right)+\boldsymbol{B}^{\epsilon} \frac{\Gamma(-\epsilon)}{\epsilon} \beta_{0}+\frac{\beta_{0}}{2 \epsilon^{2}}-\frac{\Gamma_{1}}{2 \epsilon}\right\}
\end{aligned}
$$

Taking

$$
\gamma_{s}=C_{F} a_{s}\left(\Gamma_{0} \mathcal{L}_{\mu}-\tilde{\gamma}_{0}\right)+C_{F} a_{s}^{2}\left(\Gamma_{1} \mathcal{L}_{\mu}-\tilde{\gamma}_{1}\right)+C_{F} a_{s}^{3}\left(\Gamma_{2} \mathcal{L}_{\mu}-\tilde{\gamma}_{2}\right)+\ldots
$$

We find

$$
\mathcal{D}_{3}\left(\mathbf{b}^{2}, 0\right)=\mathrm{logs}-\frac{\tilde{\gamma}_{2}}{2}+\left(\beta_{1}+\beta_{0} \Gamma_{1}\right) \zeta_{2}-\frac{2}{3} \beta_{0}^{2} \zeta_{3}+\beta_{0}\left\{C_{A}\left(\frac{2428}{81}-26 \zeta_{4}\right)-N_{f} \frac{328}{81}\right\}
$$

It coincides with the direct calculation [Li,Zhu,1604.01404].

$$
\begin{aligned}
\mathcal{D}_{L=0}^{(3)}= & -\frac{C_{A}^{2}}{2}\left(\frac{12328}{27} \zeta_{3}-\frac{88}{3} \zeta_{2} \zeta_{3}-192 \zeta_{5}-\frac{297029}{729}+\frac{6392}{81} \zeta_{2}+\frac{154}{3} \zeta_{4}\right) \\
& -\frac{C_{A} N_{f}}{2}\left(-\frac{904}{27} \zeta_{3}+\frac{62626}{729}-\frac{824}{81} \zeta_{2}+\frac{20}{3} \zeta_{4}\right)- \\
& \frac{C_{F} N_{f}}{2}\left(-\frac{304}{9} \zeta_{3}+\frac{1711}{27}-16 \zeta_{4}\right)-\frac{N_{f}^{2}}{2}\left(-\frac{32}{9} \zeta_{3}-\frac{1856}{729}\right)
\end{aligned}
$$

Important in QCD

rapidity anomalous dimension is generically non-perturbative

- Non-perturbative terms important at $b \gtrsim \Lambda_{\mathrm{QCD}}^{-1}$
- At $b \rightarrow 0$ is entirely perturbative
- There is no "non-perturbative" proof of factorization, but it is expected (e.g. b^{2}-correction factorizes at LO [Scimemi,AV,1609.06047], at all orders [AV, in prep.])
- All non-perturbative correction must turn to zero at ϵ^{*}, "renomalon nature".

Final form of TMD factorization

$$
d \sigma \sim \int d^{2} b_{T} e^{-i(q b)_{T}} H\left(Q^{2}\right) \Phi_{h_{1}}\left(z_{1}, b_{T}\right) S\left(b_{T}\right) \Delta_{h_{2}}\left(z_{2}, b_{T}\right)+Y
$$

spliting rapidity singularities

$$
S\left(b_{T}\right) \rightarrow R\left(b_{T}, \zeta^{+}\right) \cdot S_{0} \cdot R^{\dagger}\left(b_{T}, \zeta^{-}\right)
$$

$$
d \sigma \sim \int d^{2} b_{T} e^{-i(q b)_{T}} H\left(Q^{2}\right) F\left(z_{1}, b_{T} ; \zeta^{+}\right) D\left(z_{2}, b_{T} ; \zeta^{-}\right)+Y
$$

S_{0} is the finite parts of rapidity renormalization

Commonly used
renormalization scheme: $S_{0}=1$

Part II: TMD evolution

Universitãt Regensburg

$$
\frac{d \sigma}{d y d Q^{2} d^{2} \mathbf{q}_{T}}=\sigma_{0} \int d^{2} b e^{i\left(\mathbf{b} \cdot \mathbf{q}_{T}\right)} H_{f f^{\prime}}(Q, \mu) F_{f \leftarrow h}\left(x_{1}, b ; \mu, \zeta_{1}\right) D_{f^{\prime} \leftarrow h}\left(x_{2}, b ; \mu, \zeta_{2}\right)+\ldots
$$

TMD evolution is given by 2 equations

$$
\mu^{2} \frac{d F(x, b ; \mu, \zeta)}{d \mu^{2}}=\gamma_{F}(\mu, \zeta) F(x, b ; \mu, \zeta), \quad \zeta \frac{d F(x, b ; \mu, \zeta)}{d \zeta}=-\mathcal{D}(\mu, b) F(x, b ; \mu, \zeta)
$$

Universitāt Regensburg

$$
\frac{d \sigma}{d y d Q^{2} d^{2} \mathbf{q}_{T}}=\sigma_{0} \int d^{2} b e^{i\left(\mathbf{b} \cdot \mathbf{q}_{T}\right)} H_{f f^{\prime}}(Q, \mu) F_{f \leftarrow h}\left(x_{1}, b ; \mu, \zeta_{1}\right) D_{f^{\prime} \leftarrow h}\left(x_{2}, b ; \mu, \zeta_{2}\right)+\ldots
$$

TMD evolution is given by 2 equations

$$
\mu^{2} \frac{d F(x, b ; \mu, \zeta)}{d \mu^{2}}=\gamma_{F}(\mu, \zeta) F(x, b ; \mu, \zeta), \quad \zeta \frac{d F(x, b ; \mu, \zeta)}{d \zeta}=-\mathcal{D}(\mu, b) F(x, b ; \mu, \zeta)
$$

Universităt Regensburg

TMD evolution is a double-scale evolution

$$
\begin{align*}
\mu^{2} \frac{d}{d \mu^{2}} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =\frac{\gamma_{F}^{f}(\mu, \zeta)}{2} F_{f \leftarrow h}(x, b ; \mu, \zeta) \tag{1}\\
\zeta \frac{d}{d \zeta} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =-\mathcal{D}^{f}(\mu, b) F_{f \leftarrow h}(x, b ; \mu, \zeta) \tag{2}
\end{align*}
$$

Both anomalous dimensions related to each other (CS equation [Collins,Sopper,1981])

$$
\begin{equation*}
-\zeta \frac{d \gamma_{F}(\mu, \zeta)}{d \zeta}=2 \mu^{2} \frac{d \mathcal{D}(\mu, b)}{d \mu^{2}}=\Gamma_{\operatorname{cusp}}(\mu) \tag{3}
\end{equation*}
$$

Universităt Regensburg

TMD evolution is a double-scale evolution

$$
\begin{align*}
\mu^{2} \frac{d}{d \mu^{2}} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =\frac{\gamma_{F}^{f}(\mu, \zeta)}{2} F_{f \leftarrow h}(x, b ; \mu, \zeta), \tag{1}\\
\zeta \frac{d}{d \zeta} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =-\mathcal{D}^{f}(\mu, b) F_{f \leftarrow h}(x, b ; \mu, \zeta), \tag{2}
\end{align*}
$$

Solution: $\quad F\left(x, \mathbf{b} ; \mu_{f}, \zeta_{f}\right)=R\left[\mathbf{b} ;\left(\mu_{f}, \zeta_{f}\right) \rightarrow\left(\mu_{i}, \zeta_{i}\right)\right] F\left(x, \mathbf{b} ; \mu_{i}, \zeta_{i}\right)$
Expression for R is known as "Sudakov exponent" e.g.[Collins' textbook]

$$
\begin{equation*}
\times \exp \left\{\ln \frac{\sqrt{\zeta_{A}}}{\mu_{b}} \tilde{K}\left(b_{*} ; \mu_{b}\right)+\int_{\mu_{n}}^{\mu} \frac{\mathrm{d} \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{D}\left(g\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{\sqrt{\zeta_{A}}}{\mu^{\prime}} \gamma_{K}\left(g\left(\mu^{\prime}\right)\right)\right]\right\} \tag{13.70}
\end{equation*}
$$

This is probably the best formula for calculating and fitting TMD fragmentation functions;

Two-dimensional picture

see details in [Scimemi,AV,1803.11089]

Evolution field
is conservative
Evol.potential:

TMD evolution is 2D evolution

$$
\begin{gathered}
\mu^{2} \frac{d F(x, b ; \mu, \zeta)}{d \mu^{2}}=\gamma_{F}(\mu, \zeta) F(x, b ; \mu, \zeta) \\
\zeta \frac{d F(x, b ; \mu, \zeta)}{d \zeta}=-\mathcal{D}(\mu, b) F(x, b ; \mu, \zeta) \\
\text { or } \\
\vec{\nabla} F=\overrightarrow{\mathbf{E}} F
\end{gathered}
$$

$$
\mathbf{E}=\left(\frac{\gamma_{F}}{2},-\mathcal{D}\right)
$$

$$
\vec{\nabla} \times \overrightarrow{\mathbf{E}}=0
$$

$$
\mathbf{E}=\nabla U
$$

```
see details in [Scimemi,AV,1803.11089]
```


Evolution field
is conservative
Evol.potential:

$$
\begin{aligned}
& \mathbf{E}=\left(\frac{\gamma_{F}}{2},-\mathcal{D}\right) \\
& \vec{\nabla} \times \overrightarrow{\mathbf{E}}=0 \\
& \mathbf{E}=\nabla U
\end{aligned}
$$

Solution

$$
F\left(x, \mathbf{b} ; \mu_{1}, \zeta_{1}\right)=R\left[\mathbf{b} ;\left(\mu_{1}, \zeta_{1}\right) \rightarrow\left(\mu_{2}, \zeta_{2}\right)\right] F\left(x, \mathbf{b} ; \mu_{2}, \zeta_{2}\right)
$$

Initial scales:
$\mu_{1} \simeq Q$
$\zeta_{1}=Q^{2}$

Universitãt Regensburg

Solution

$$
F\left(x, \mathbf{b} ; \mu_{1}, \zeta_{1}\right)=R\left[\mathbf{b} ;\left(\mu_{1}, \zeta_{1}\right) \rightarrow\left(\mu_{2}, \zeta_{2}\right)\right] F\left(x, \mathbf{b} ; \mu_{2}, \zeta_{2}\right)
$$

Main complication:
$\mathbf{b}^{2} \in(0, \infty)$
perturbative logarithms $\ln \left(\mathbf{b}^{2} \mu^{2}\right), \ln \left(\mathbf{b}^{2} \zeta\right), \ln \left(\mu^{2} / \zeta\right), a_{s}(\mu)$

Universitãt Regensburg

Solution

$$
F\left(x, \mathbf{b} ; \mu_{1}, \zeta_{1}\right)=R\left[\mathbf{b} ;\left(\mu_{1}, \zeta_{1}\right) \rightarrow\left(\mu_{2}, \zeta_{2}\right)\right] F\left(x, \mathbf{b} ; \mu_{2}, \zeta_{2}\right)
$$

It is not possible to minimize all logarithms in a reasonably wide range of b. Something blows up in any case.

But it is not needed!

TMD distribution is not defined by a scale (μ, ζ)
It is defined by an equipotential line.

The scaling is defined by a difference between scales

a difference between potentials

Universitãt Regensburg

TMD distribution is not defined by a scale (μ, ζ) It is defined by an equipotential line.

The scaling is defined by a difference between scales
a difference between potentials
Evolution factor to both points is the same
although the scales are different by $10^{2} \mathrm{GeV}^{2}$

Universităt Regensburg

TMD distributions on the same equipotential line are equivalent.

$$
\text { (} 10 \text { Ne can enumerate them by a }
$$

Universal scale-independent TMD

There is a unique line which passes though all μ 's
The optimal TMD distribution
$F(x, b)=F\left(x, b ; \mu, \zeta_{\mu}\right)$
where ζ_{μ} is the special line.

The evolution potential depends on b.
Relative position of its elements (saddle-point, special lines) dictates the shape of evolution factor.

Evolution factor has simple expression

$$
R[\mathbf{b} ;(\mu, \zeta) \rightarrow \text { s.l. }]=\left(\frac{\zeta}{\zeta_{\mu}}\right)^{-\mathcal{D}(\mathbf{b}, \mu)}
$$

Good PT convergence
$\mu=Q$

Part III: Practice

Universitãt Regensburg

Single cross-section \Rightarrow three NP functions

$$
\frac{d \sigma}{d p_{T}^{2} d Q} \simeq \sigma_{0}(Q) \int d^{2} \mathbf{b} e^{i \mathbf{b} \mathbf{p}_{T}}\left(\frac{Q^{2}}{\zeta_{Q}(b)}\right)^{-2 \mathcal{D}(Q, b)} F_{1}\left(x_{1}, \mathbf{b}\right) F_{2}\left(x_{2}, \mathbf{b}\right)
$$

- TMD distribution $F_{1}\left(x_{1}, b\right)$
- TMD distribution $F_{2}\left(x_{2}, b\right)$
- non-perturbative evolution $\mathcal{D}(Q, b)$

Universitãt Regensburg

Single cross-section \Rightarrow three NP functions

$$
\frac{d \sigma}{d p_{T}^{2} d Q} \simeq \sigma_{0}(Q) \int d^{2} \mathbf{b} e^{i \mathbf{b p}_{T}}\left(\frac{Q^{2}}{\zeta_{Q}(b)}\right)^{-2 \mathcal{D}(Q, b)} F_{1}\left(x_{1}, \mathbf{b}\right) F_{2}\left(x_{2}, \mathbf{b}\right)
$$

- TMD distribution $F_{1}\left(x_{1}, b\right)$
- TMD distribution $F_{2}\left(x_{2}, b\right)$
- non-perturbative evolution $\mathcal{D}(Q, b)$

Universităt Regensburg

$$
\text { TMD factorization } \Rightarrow \text { small- } q_{T} / Q
$$

Data-cut rule

$$
q_{T} \simeq 0.25 Q
$$

see study in
[I.Scimemi,AV,1706.01473]

Global fit of TMD Drell-Yan data
[V.Bertone,I.Scimemi,AV,1902.08474]

$$
x_{1,2}=\frac{Q}{\sqrt{s}} e^{ \pm y} \sqrt{1+\frac{q_{T}^{2}}{Q^{2}}}
$$

High-energy: CDF, D0, ATLAS, CMS, LHCb 194 points

Low-energy: E288, E605, E772, PHENIX 263 points

Total: 457 points

$$
4<Q<150 \mathrm{GeV}
$$

$$
x>10^{-4}
$$

Non-perturbative evolution kernel

$$
\mathcal{D}(\mathbf{b})=\mathcal{D}_{\text {pert }}\left(b^{*}(\mathbf{b})\right)+c_{0} \mathbf{b} b^{*}(\mathbf{b}),
$$

$$
b^{*}(\mathbf{b})=\mathbf{b} / \sqrt{1+\mathbf{b}^{2} / B_{\mathrm{NP}}^{2}}
$$

$$
\begin{gathered}
B_{\mathrm{NP}} \simeq 2 \mathrm{GeV} \\
c_{0} \simeq 0.03 \mathrm{GeV}^{2}
\end{gathered}
$$

Universitãt Regensburg

Non-perturbative evolution kernel

Universităt Regensburg

Extracted non-perturbative rapidity anomalous dimension is universal and can be used to describe different data

Pion-induced Drell-Yan [AV,1907.10356]

Universitāt Regensburg

Extracted non-perturbative rapidity anomalous dimension is universal and can be used to describe different data

Semi-inclusive deep inelastic scattering [Scimemi,AV, work in progress]

Extracted non-perturbative rapidity anomalous dimension

 is universal and can be used to describe different data
artemide

Program package for TMD phenomenology

- Efficient code based on TMD factorization
- Variety of evolution schemes (CSS, ζ-prescription, improved- \mathcal{D}, resummed, etc)
- Full control on non-perturbative and model inputs.
- All possible combinations of perturbative inputs LO,NLO,NNLO,"NNNLL"
- Bin-integrations, lepton cuts, etc.
- The library of processes is constantly updating
- Drell-Yan -like
- (unpolarized) Z / γ^{*}, W 's, Higgs, pion-induces.
- SIDIS
- unpolarized
- Sivers effect (in preparation)
- More in plans
repository:
https://github.com/VladimirovAlexey/artemide-public

Part IV:
 A bit on interpretation
 (in progress)

Rapidity anomalous dimension is function that directly measures properties of QCD vacuum Which properties?

Non-perturbative definition of RAD
Rapidity anomalous dimension is independent on regularization.

$$
S\left(b ; \Lambda_{+} \Lambda_{-}\right)=\frac{\operatorname{Tr}}{N_{c}}\langle 0| P \exp \left(-i g \int_{C} d x^{\mu} A_{\mu}(x)\right)|0\rangle
$$

Rapidity anomalous dimension is function that directly measures properties of QCD vacuum

Which properties?

Non-perturbative definition of RAD
Rapidity anomalous dimension is independent on regularization.

$$
S\left(b ; \Lambda_{+} \Lambda_{-}\right)=\frac{\operatorname{Tr}}{N_{c}}\langle 0| P \exp \left(-i g \int_{C} d x^{\mu} A_{\mu}(x)\right)|0\rangle
$$

$$
\text { At } \Lambda_{+} \Lambda_{-} \rightarrow \infty
$$

$$
S\left(b ; \Lambda_{+} \Lambda_{-}\right)=\exp \left(-2 \mathcal{D}(b) \ln \left(\Lambda_{+} \Lambda_{-}\right)+\ldots .\right)
$$

Due to Lorentz invariance it is enough to $\Lambda_{-} \rightarrow \infty$

Rapidity anomalous dimension can be defined as a primary object.

- Route to non-perturbative calculation and modeling.

Universităt Regensburg

Power correction to \mathcal{D}

$$
\mathcal{D}(\mathbf{b})=\underbrace{\mathcal{D}_{\text {pert }}\left(\ln \left(\mu^{2} \mathbf{b}^{2}\right)\right)}_{\text {known at } \mathrm{N}^{3} \mathrm{LO}}+\mathbf{b}^{2} \mathcal{D}_{1}\left(\ln \left(\mu^{2} \mathbf{b}^{2}\right)\right)+\mathbf{b}^{4} \mathcal{D}_{2}\left(\ln \left(\mu^{2} \mathbf{b}^{2}\right)\right)+\ldots
$$

Power correction to \mathcal{D}

$$
\mathcal{D}(\mathbf{b})=\underbrace{\mathcal{D}_{\text {pert }}\left(\ln \left(\mu^{2} \mathbf{b}^{2}\right)\right)}_{\text {known at } \mathrm{N}^{3} \mathrm{LO}}+\mathbf{b}^{2} \mathcal{D}_{1}\left(\ln \left(\mu^{2} \mathbf{b}^{2}\right)\right)+\mathbf{b}^{4} \mathcal{D}_{2}\left(\ln \left(\mu^{2} \mathbf{b}^{2}\right)\right)+\ldots
$$

\mathcal{D}_{1} is expressed via 2-point correlators connected by "a minimal distance link"
$g^{2} \frac{\operatorname{Tr}}{N_{c}}\langle 0| F_{\mu x}(x)[x, 0][0, y] F_{\nu y}(y)|0\rangle=$

$$
\left(g^{\mu \nu}-\frac{y^{\mu} x^{\nu}}{(x y)}\right) \varphi_{1}(x, y)+(\ldots)^{\mu \nu} \varphi_{2}
$$

$$
\begin{gathered}
\text { At LO } x^{2}=y^{2}=0 \\
\varphi_{1}(x, y)=\varphi_{1}\left(r^{2}\right) \\
\varphi_{2}(x, y)=0
\end{gathered}
$$

$$
\mathcal{D}_{1}(\mathbf{b})=\frac{1}{2} \int_{0}^{\infty} \frac{d \mathbf{r}^{2}}{\mathbf{r}^{2}} \varphi_{1}\left(\mathbf{r}^{2}\right), \quad \text { here } \mathbf{r}^{2}=-r^{2}>0
$$

Power correction to \mathcal{D}

$$
\mathcal{D}(\mathbf{b})=\underbrace{\mathcal{D}_{\text {pert }}\left(\ln \left(\mu^{2} \mathbf{b}^{2}\right)\right)}_{\text {known at } \mathrm{N}^{3} \mathrm{LO}}+\mathbf{b}^{2} \mathcal{D}_{1}\left(\ln \left(\mu^{2} \mathbf{b}^{2}\right)\right)+\mathbf{b}^{4} \mathcal{D}_{2}\left(\ln \left(\mu^{2} \mathbf{b}^{2}\right)\right)+\ldots
$$

Estimation

$$
\mathcal{D}_{1}(\mathbf{b})=\frac{1}{2} \int_{0}^{\infty} \frac{d \mathbf{r}^{2}}{\mathbf{r}^{2}} \varphi_{1}\left(\mathbf{r}^{2}\right), \quad \text { here } \mathbf{r}^{2}=-r^{2}>0
$$

- At $\mathbf{r}^{2} \rightarrow 0, \varphi_{1} \sim \mathbf{r}^{2} \frac{\pi^{2}}{36} G_{2}$
- At $\mathbf{r}^{2} \rightarrow \infty, \varphi_{1} \sim \frac{1}{\mathbf{r}^{2}}$ (at least)

So, order-of-magnitude estimation

$$
\mathcal{D}_{1} \lesssim \frac{\pi^{2}}{72} \frac{G_{2}}{\Lambda_{\mathrm{QCD}}^{2}} \sim(0.01-0.05) \mathrm{GeV}^{2}
$$

Extracted value

$$
\mathcal{D}_{1}=0.022 \pm 0.009 \mathrm{GeV}^{2}
$$

Non-perturbative evolution kernel

measures properties of QCD vacuum
(but requires model for interpretation)

$\bar{Q} Q$-potential

Stochastic Vacuum model

- The simplest model for QCD vacuum (Wilson-lines unimportant)
- Allows for the definition of a "static potential" (linear)

$$
V(\mathbf{r})=\mathbf{r} \frac{\pi}{4} \mathcal{D}^{\prime \prime}(0)+\frac{\mathcal{D}^{\prime}(0)}{2}+\frac{\mathbf{r}^{2}}{2} \int_{\mathbf{r}}^{\infty} d \mathbf{x} \frac{\mathcal{D}^{\prime}(\mathbf{x})}{\mathbf{x}^{2} \sqrt{\mathbf{x}^{2}-\mathbf{r}^{2}}}
$$

- "String tension" $\sigma=\frac{\pi}{4} \mathcal{D}^{\prime \prime}(0)=\frac{\pi}{2} c_{0} \simeq 0.05 \pm 0.02 \mathrm{GeV}^{2}$ vs. $0.19 \mathrm{GeV}^{2}$

Conclusion

Nowadays,

- transverse momentum dependent (TMD) factorization theorem is proved,
- divergences of (TMD) soft factors are understood,
- rapidity anomalous dimension are known at NNLO
- TMD evolution works!.

Future

- global phenomenology DY+SIDIS, asymmetries
- interpretation and models,
- lattice measurements of \mathcal{D},
- ...

Universitãt Regensburg

