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Introduction

The talk is about

transverse momentum dependent (TMD) factorization theorems,
soft factors,
rapidity divergences,
rapidity anomalous dimension and TMD evolution,
correspondence between different processes,
and higher-loop calculations without loop-diagrams.

Plan of the talk

introduction to TMD factorization,
geometric/spatial definition of divergences,
proof of renormalization theorem for rapidity divergences,
correspondence between UV and rapidity divergences.
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Introduction to introduction

The modern factorization theorems have the following general structure

dσ

dX︸︷︷︸
cross−X

= H︸︷︷︸
Hard part

perturbative

× f1 ⊗ ...⊗ J2︸ ︷︷ ︸
Parton distributions
jet-functions, etc
Non-pertrubative

universal

× S︸︷︷︸
Soft factor(s)
perturbative ?

+ Some power
suppressed terms

This is a typical result of field mode separation (SCET)
Often, individual terms in the product are singular, and require "refactorization"

In fact, some of parts of this construction are not proven/accurately formulated,

⇒ problems for higher calculation of perturbation theory
⇒ lack of "non-perturbative" definition for "non-perturbative functions"
⇒ absence of restrictions on the approach (working criterion)

My talk is about factorization of soft factors and rapidity divergences,
in TMD factorization theorems (but not only).
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Introduction part I:
TMD factorization
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Transverse momentum dependent (TMD) factorization describes double-inclusive
processes in the regime of small transverse momentum (q2

T � Q2)

processes: h1 + h2 → γ∗/Z/W +X "Drell-Yan"
h1 + γ∗ → h2 +X semi-inclusive DIS (SIDIS)
e+e− → h1 + h2 +X

The transverse momentum of photon
qT is determined with respect to
"hadron plane"
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In TMD regime the produced transverse momentum is mostly of "non-perturbative"
origin: ⇒ TMD distributions (PDFs and FFs)

[Bertone,Scimemi,AV,in preparation]

TMD distributions should not be mistaken with collinear distributions (although they
have some common points).

Structurally different: different divergences and different evolution.
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Structure of TMD factorization

dσ

dQdy d2qT
∼
∫
d4x eiqx

∑
X

〈h1|Jµ(x)|X;h2〉〈X;h2|Jν(0)|h1〉

dσ

dQdy d2qT
∼
∫
d2bT e

−i(qb)TH(Q2) Φh1(z1, bT )S(bT )∆h2
(z2, bT ) + Y

TMD factorization

TMD PDF

TMD FF

TMD soft factor

power suppressed
terms
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dσ
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∫
d4x eiqx

∑
X

〈h1|Jµ(x)|X;h2〉〈X;h2|Jν(0)|h1〉

dσ

dQdy d2qT
∼
∫
d2bT e

−i(qb)TH(Q2) Φh1(z1, bT )S(bT )∆h2
(z2, bT ) + Y

TMD factorization

TMD PDF (singular)

TMD FF (singular)

TMD soft factor

power suppressed
terms

(very singular)

All components of factorization formula
contain rapidity divergences.

Within soft factor rapidity divergencs
entangle PDF and FF
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

Light-like vectors:

n2 = n̄2 = 0, (n · n̄) = 1

Wilson line (ray)

Φv(x) = P exp

(
ig

∫ ∞
0

dσvµAAµ (vσ + x)TA
)

Looks simple, but SF is a theoretician’s
nightmare.

Multiple divergences!
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

∫
dxdy D(x− y)

=

∫ ∞
0

dx+

∫ ∞
0

dy−
1

x+y−

=

∫ ∞
0

dx+

x+

∫ ∞
0

dy−

y−

= (UV + IR) (UV + IR)

Some people set it to zero.

A.Vladimirov RtRd February 7, 2019 8 / 39



TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

∫
dxdy D(x− y)

=

∫ ∞
0

dx+

∫ ∞
0

dy−
1

(2x+y− + b2
T )

= IR at x, y →∞

However, it exactly cancels IR from the previous
diagram

Proved at all orders,
e.g.[Echevarria,Scimemi,AV,1511.05590]
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

∫
dxdy D(x− y)

=

∫ ∞
0

dx+

∫ ∞
0

dy−
1

(2x+y− + b2
T )

=

∫ ∞
0

dσ

σ︸ ︷︷ ︸
rap.div

∫ ∞
0

dLL

(2L2 + b2)︸ ︷︷ ︸
IR

Rapidity divergence is a special kind of
divergences, UV& IR

Does not cancel.
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Regularizations for rapidity divergences

Rapidity divergences are not regularized by dim.reg.
There are many regularizations:

δ-regularization [Echevarria,Scimemi,AV,1511.05590],
exponential-regularization [Li,Neill,Zhu,1604.00392],
off-light-cone Wilson lines [Collins’ textbook],
analytical regularization [Chiu, et al,1104.0881],
...

The most important property of SF is that its logarithm is linear in ln(δ+δ−)
(2-loop check [1511.05590])

S(bT ) = exp
(
A(bT , ε) ln(δ+δ−) +B(bT , ε)

)
It allows to split rapidity divergences and define individual TMDs.

Important note 1: the structure holds for arbitrary ε
Important note 2: it is not obvious and will be proved here
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exp(A ln(δ+δ−) +B) = exp

(
A

2
ln((δ+)2ζ) +

B

2

)
exp

(
A

2
ln((δ−)2ζ−1) +

B

2

)

dσ ∼
∫
d2bT e

−i(qb)TH(Q2) Φh1(z1, bT )S(bT )∆h2
(z2, bT ) + Y

dσ ∼
∫
d2bT e

−i(qb)TH(Q2) F (z1, bT ; ζ+) D(z2, bT ; ζ−) + Y

spliting rapidity singularities
S(bT )→

√
S(bT ; ζ+)

√
S(bT ; ζ−)

TMD FF√
S∆h2

(regular)

TMD PDF√
SΦh1

(regular)

The extra "factorization" introduces
an extra scale ζ.

And corresponded evolution equation

ζ
d

dζ
F =

A

2
F = −DF

Rapidity anomalous dimension (RAD)
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Introduction part II:
Double Drell-Yan scattering

&
multi-parton scattering soft factors
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pictures from [1510.08696]

Double Drell-Yan scattering

Experimental status is doubtful
Collinear part of factorization is proved [Diehl,et
al,1510.08696]
In many aspects similar to TMD factorization
The same problem of rapidity factorization, but
enchanted by the matrix structure

dσ

dX
∼
∫

[dbT e
−i(qb)T ]H1(Q2

1)H2(Q2
2) FAh1(z1,2, b1,2,3,4)SAB(b1,2,3,4)F̄Bh2(z1,2, b1,2,3,4) + Y

DPD (singular)

DPD soft factor

power suppressed
terms

(very singular)

Structure is similar to TMD Drell-Yan
but now it contains

COLOR
The soft factor is a matrix
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Color structure makes a lot of difference

FAh1S
ABF̄Bh2

singlets−−−−−→
(
F1, F8

)( S11 S18

S81 S88

)(
F̄1

F̄8

)

Soft-factors Sij are sum of Wilson loops and double Wilson loops (all possible
connections).
Soft-factors are non-zero even in the integrated case.
2-loop calculation [AV,1608.04920]: rapidity divergences factorize (as a product of
matrices) ⇒ matrix evolution equation
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Let’s look at multi-parton scattering

Just as double-parton, but multi..(four WL’s → arbitrary number WL’s)
Too many color-singlets, better to work with explicit color indices (color-multi-matrix)

Σ(a1...aN );(d1...dN )(b1, ...,bN ) = Σ(b1,..,N )

Σ({b}) = 〈0|T{[Φ−nΦ†−n̄](bN ) . . . [Φ−nΦ†−n̄](b1)}|0〉

Color-matrix notation

All color flow in the same direction
i’th WL has generator Ti

In total the soft factor is color-neutral∑
i

Ti = 0.

Color-neutrality → gauge invariance +
cancellation IR singularities
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Σ(a1...aN );(d1...dN )(b1, ...,bN ) = Σ(b1,..,N )

Σ({b}) = 〈0|T{[Φ−nΦ†−n̄](bN ) . . . [Φ−nΦ†−n̄](b1)}|0〉

Result at NNLO is amazingly simple

Σ(b1,..,N ) = exp

−∑
i<j

TAi TAj σ(bij) +O(a3
s)


TAi TAj = "dipole"

O(a3
s) contains also "color-multipole" terms

Rapidity factorization for dipole part is
straightforward (assuming TMD factorization)
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Rapidity divergence renormalization theorem

These examples are parts of general picture, and could be described by
single factorization/renormalization theorem.

Part I:
Renormalization theorem

for
rapidity divergences
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Rapidity divergence renormalization theorem

Rapidity divergences associated with different directions in the MPS soft factor could
be factorized from each other. At any finite order of perturbation theory there exists
the "rapidity divergence renormalization factor" Rn, which contains only rapidity
divergences associated with the direction n, such that the combination

ΣR({b}, ν+, ν−) = Rn({b}, ν+)Σ({b})R†n̄({b}, ν−)

is free of rapidity divergences.

Implicitly, it has been expected for long time [Chiu,Jain,Neill,Rothstein,1104.0881]
It is final block of the TMD factorization theorem (and also finalizes factorization for
Double-DY)
It has several non-trivial consequences.

A.Vladimirov RtRd February 7, 2019 16 / 39



Rapidity divergence renormalization theorem

Next, I am going to sketch the proof.

Typically, such theorems are proved by considering singularities of Feynman diagrams.
I will present a completely different approach.
In fact, the approach could appear more interesting and important then the theorem it
self.
I will skip a lot of details, please, ask questions or look into [AV;1707.07606]

General picture of proof

Isolate the spatial area of an operator which results into rapidity divergences.
Invent a (conformal) transformation which map this area to a point (i.e. rapidity
divergences to UV divergences)
Using this transformation, and UV renormalization theorem, proof the theorem in CFT
Generalize to QCD, using iteration procedure and restoration of conformal invariance at
the QCD critical point.
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Divergences in coordinate space

Classification of divergences in coordinate space

Ultraviolet divergences (UV)

Localisation of fields in the vicinity of a point

x2 → 0

WARNING: depends on gauge fixation condition
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Divergences in coordinate space

Classification of divergences in coordinate space

Mass divergences (IR)

Localisation of fields at the distant sphere

x2 →∞

WARNING: depends on gauge fixation condition
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Divergences in coordinate space

Classification of divergences in coordinate space

Collinear divergences (UV)

Localisation of fields in the vicinity of a light-like line
(xp)→ 0 (p2 = 0)

see better definition [Erdogan,Sterman,1411.4588]

WARNING: depends on gauge fixation condition
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Divergences in coordinate space

Classification of divergences in coordinate space

Ultraviolet divergences (UV)

Localisation of fields in the vicinity of a distant transverse plane
see better definition [AV,1707.07606]

WARNING: depends on gauge fixation condition
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Conformal transformation

Rapidity divergences associated with transverse planes (or better to say with the
layer between the transverse plane and infinity). If we think of space-time as about a
Riemann sphere, these planes are points at poles of Riemann sphere.

⇐⇒
t

z

x,y

n

n
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Conformal transformation

Cn̄ : {x+, x−, x⊥} → {
−1

2a

1

λ+ 2ax+
, x− +

ax2
⊥

λ+ 2ax+
,

x⊥
λ+ 2ax+

}

Composition of two conformal-stereographic transformations

Cnn̄ = CnCn̄ = Cn̄Cn
With the special choice of parameters any DY-like soft factor transforms to a compact object.

Σ(b) Ω(v)
Cnn̄
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Conformal transformation

In conformal QFT rapidity divergences equivalent to UV divergences

The UV renormalization imposes rapidity divergence renormalization

There are also UV renormalization factors in cusps (we omit them for a moment)

R(b)Σ(b)R†(b) Z(v)Ω(v)Z†(v)
Cnn̄

finite finite
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Conformal transformation

RDRT in conformal theory

In a conformal field theory rapidity divergences can be removed (renor-
malized) by a multiplicative factor.

C−1
nn̄ (Z({v}, µ)) = Rn({b}, ν+)

Rapidity anomalous dimension (RAD)

D({b}) =
1

2
R−1
n ({b}, ν+)ν+ d

dν+
Rn({b}, ν+),

In CSS notation it is −K, in [Becher,Neubert] Fqq̄ , in SCET literature γν .

(In CFT) DY-like Soft factors expresses as

Σ({b}, δ+, δ−) = e2D({b}) ln(δ+/ν+)

finite︷ ︸︸ ︷
Σ0({b}, ν2) e2D

†({b}) ln(δ−/ν−),
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From CFT to QCD

From conformal theory to QCD

QCD at the critical point

QCD is conformal in 4− 2ε∗ dimensions

β(ε∗) = 0, ⇒ ε∗ = −asβ0 − a2
sβ1 − ....

It is very useful trick, allows to restore "conformal-violating" terms, see
e.g.[Braun,Manashov,1306.5644]

Thus, at 4− 2ε∗ dimensions, the rapidity renormalization theorem
works.

A.Vladimirov RtRd February 7, 2019 23 / 39



From CFT to QCD

From conformal theory to QCD

QCD at the critical point

QCD is conformal in 4− 2ε∗ dimensions

β(ε∗) = 0, ⇒ ε∗ = −asβ0 − a2
sβ1 − ....

It is very useful trick, allows to restore "conformal-violating" terms, see
e.g.[Braun,Manashov,1306.5644]

Thus, at 4− 2ε∗ dimensions, the rapidity renormalization theorem
works.

A.Vladimirov RtRd February 7, 2019 23 / 39



From CFT to QCD

RTRD works at any finite order of QCD

Proof by induction
Important input: Counting of rap.div. is independent on number of dimensions
Important input: At 1-loop QCD is conformal = RTRD hold.
(1) All Leading divergences cancel by R.
(2) Make shift ε∗ → ε∗ + β0as.
(3) Modify R such that next-to-leading divegences cancel (it can be done perturbatively,
thanks to as)

Repeat (2-3) N times, and got renormalization at aN+1
s order.

Soft factor has the form

Σ({b}, δ+, δ−) = e2D({b}) ln(δ+/ν+)

finite︷ ︸︸ ︷
Σ0({b}, ν2) e2D

†({b}) ln(δ−/ν−),

DQCD 6= DCFT

A.Vladimirov RtRd February 7, 2019 24 / 39



From CFT to QCD

RTRD works at any finite order of QCD

Proof by induction
Important input: Counting of rap.div. is independent on number of dimensions
Important input: At 1-loop QCD is conformal = RTRD hold.
(1) All Leading divergences cancel by R.
(2) Make shift ε∗ → ε∗ + β0as.
(3) Modify R such that next-to-leading divegences cancel (it can be done perturbatively,
thanks to as)

Repeat (2-3) N times, and got renormalization at aN+1
s order.

Soft factor has the form

Σ({b}, δ+, δ−) = e2D({b}) ln(δ+/ν+)

finite︷ ︸︸ ︷
Σ0({b}, ν2) e2D

†({b}) ln(δ−/ν−),

DQCD 6= DCFT

A.Vladimirov RtRd February 7, 2019 24 / 39



From CFT to QCD

Example then it does not work (no factorization?)

There are talks about "dipole-like" TMD distributions that could appear in processes like
pp→ hX e.g. [Boer,et al,1607.01654]

However, it is straightforward to show that the factorization is necessarily broken (or has not
a closed form)

Cnn̄

To have factorization
separate R factors

are needed

In the tranformed SF
there is a single
singular point

The renormalization of dipole recouple colors → extra gauge link → ala BK equation.
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From CFT to QCD

Consequences
Factorization for multi-Drell-Yan process (and TMD factorization as a particular case)
Generalized (matrix) CSS equation
Correspondence between soft and rapidity anomalous dimensions
Constraints of soft anomalous dimension.
Equality of DY and SIDIS TMD soft factors (?)
Many others ... (in progress)
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SAD/RAD correspondence

Part II:
Correspondence between

soft anomalous dimension (SAD)
&

rapidity anomalous dimension (RAD)
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SAD/RAD correspondence

Soft anomalous dimension (evolution of jet-production)

Scattering amplitude for n-massless partons (jets) at fixed angles

An({vi}) ' Hn({vi}, µ)
n∏
i=1

J(pi, µ)

J (vi, µ)

dHn({vi}, µ)

d lnµ
= γγγs({vi})×Hn({vi}, µ).

γγγs({vi}) is SAD.

Rapidity anomalous dimension (evolution of multiPDs)

The rapidity-divergences renomalized multiPD defined

Ff ({x}, {b}, ν+) = Σ0({b}, ν2)R†−1({b}, ν−)F̃f ({x}, {b})

ν+ d

dν+
F ({x}, {b}, µ, ν+) =

1

2
D({b}, µ)× F ({x}, {b}, µ, ν+).

D({b}, µ) is RAD.
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SAD/RAD correspondence

Soft/rapidity anomalous dimension correspondence

The equivalence (under conformal transformation) between Z and R implies the equality
between corresponding anomalous dimensions

γs({v}) = 2D({b})

It has been observed in N = 4 SYM [Li,Zhu,1604.01404].

UV anomalous dimension independent on ε
Rapidity anomalous dimension does depend on ε
At ε∗ conformal symmetry of QCD is restored

In QCD

γγγs({v}) = 2D({b}, ε∗)

Exact relation!
Connects different regimes of QCD

→ Lets test it.

A.Vladimirov RtRd February 7, 2019 29 / 39



SAD/RAD correspondence

Soft/rapidity anomalous dimension correspondence

The equivalence (under conformal transformation) between Z and R implies the equality
between corresponding anomalous dimensions

γs({v}) = 2D({b})

It has been observed in N = 4 SYM [Li,Zhu,1604.01404].

UV anomalous dimension independent on ε
Rapidity anomalous dimension does depend on ε
At ε∗ conformal symmetry of QCD is restored

In QCD

γγγs({v}) = 2D({b}, ε∗)

Exact relation!
Connects different regimes of QCD

→ Lets test it.

A.Vladimirov RtRd February 7, 2019 29 / 39



SAD/RAD correspondence

γγγs({v}) = 2D({b}, ε∗)

How to use it?

Physical value is D({b}, 0)

ε∗ = 0− asβ0 − a2
sβ1 − a3

sβ2 − ....
We can compare order by order in PT

D1({b}) =
1

2
γγγ1({v}),

D2({b}) =
1

2
γγγ2({v}) + β0D′1({b}),

D3({b}) =
1

2
γγγ3({v}) + β0D′2({b}) + β1D′1({b})−

β2
0

2
D′′1 ({b}),
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SAD/RAD correspondence

TMD rapidity anomalous dimension

2-loop expression for RAD

D1(b2, ε) = −2asCF

[(b2

4

)ε
Γ(−ε) +

1

ε

]
= asCF

{
2Lµ + ε (L2

µ + ζ2)︸ ︷︷ ︸
D′1

+...
}

Taking

γs = CF as (Γ0Lµ − γ̃0) + CF a
2
s (Γ1Lµ − γ̃1) + ... (1)

We find

D2(b2, 0) = CF

(
β0L2

µ +
Γ1

2
Lµ−

γ̃1

2
+ β0ζ2︸ ︷︷ ︸

d(2,0)

)
(2)

It coincides with the direct calculation [Echevarria,Scimemi,AV,1511.05590].
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SAD/RAD correspondence

TMD rapidity anomalous dimension

3-loop expression for RAD

D2(b2, ε) = a2
sCF

{
BBB2εΓ2(−ε)

(
CA(2ψ−2ε − 2ψ−ε + ψε + γE)

+
1− ε

(1− 2ε)(3− 2ε)

(
3(4− 3ε)

2ε
CA −Nf

))
+BBBε

Γ(−ε)
ε

β0 +
β0

2ε2
−

Γ1

2ε

}
Taking

γs = CF as (Γ0Lµ − γ̃0) + CF a
2
s (Γ1Lµ − γ̃1) + CF a

3
s (Γ2Lµ − γ̃2) + ...

We find

D3(b2, 0) = logs−
γ̃2

2
+ (β1 + β0Γ1)ζ2 −

2

3
β2

0ζ3 + β0

{
CA

(
2428

81
− 26ζ4

)
−Nf

328

81

}
It coincides with the direct calculation [Li,Zhu,1604.01404].
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SAD/RAD correspondence

D(3)
L=0 = −

C2
A

2

(
12328

27
ζ3 −

88

3
ζ2ζ3 − 192ζ5 −

297029

729
+

6392

81
ζ2 +

154

3
ζ4

)
−
CANf

2

(
−

904

27
ζ3 +

62626

729
−

824

81
ζ2 +

20

3
ζ4

)
−

CFNf

2

(
−

304

9
ζ3 +

1711

27
− 16ζ4

)
−
N2
f

2

(
−

32

9
ζ3 −

1856

729

)
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SAD/RAD correspondence

Quadrupole part of SAD

γγγs({v}) = −
1

2

∑
[i,j]

TAi TAj γdipole(vi · vj)−
∑

[i,j,k,l]

ifACEifEBDTAi TBj TCk TDl Fijkl

−
∑

[i,j,k]

T
{AB}
i TCj TDk if

ACEifEBDC +O(a4
s),

Quadrupole part has been calculated in [Almelid,Duhr,Gardi;1507.00047]

C̃ = a3
s

(
ζ2ζ3 +

ζ5

2

)
+O(a4

s),

F̃ijkl({b}) = 8a3
sF(ρ̃ikjl, ρ̃iljk) +O(a4

s),

Quadrupole part of RAD

Color structures are not affected by ε∗

Quadrupole contribution depends only on conformal ratios

ρijkl =
(vi · vj)(vk · vl)
(vi · vk)(vj · vl)

↔ ρ̃ijkl =
(bi − bj)2(bk − bl)2

(bi − bk)2(bj − bl)2
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TMD evolution

Conclusion
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TMD evolution

Global extraction of F1 and RAD at NNLO by [Bertone, Scimemi & AV,1902.????]
4.<Q<5. GeV

5.<Q<6. GeV
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E288(300)
χ2/#p=0.93
av.shift=29.9%
lum.uncert.=25%

Drell-Yan at Q = 4− 5GeV

χ2 /#p = 0.43 + 0.07 = 0.49 av.shift = 1.4%

ATLAS 8 TeV 46-66 GeV

χ2 /#p = 0.74 + 0.13 = 0.87 av.shift = 2.%

ATLAS 8 TeV 116-150 GeV

0.98

0.99

1.00

1.01

1.02

0 1 2 3 4 5 60 2 4 6 8 10 12 14

qT (GeV) qT (GeV)

Drell-Yan at Q = 116− 150GeV

TMD evolution is a key
element

χ2
global
d.o.f.

' 1.15

Here:
3-loop evolution
2-loop coefficient
function
2-loop matching
ζ-prescription
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TMD evolution

Non-perturbative part of RAD

At large-b RAD became non-perturbative and must be extracted from the data together
with TMDs.

b(GeV-1)

D(b,μ=91 GeV)

1. 2. 3. 4. 5.
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ATLAS(46<Q<66)

Total:

457 data points
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]
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TMD evolution

Conclusion

Renormalization theorem for rapidity divergences

Rapidity divergences in DY-like soft factors can be renomalized (just like UV
divergences).
Conformal-stereographic projection provides simple criterion of renormalizability.
It results to a consistent definition of TMD distributions, DPDs, multi-PDs.

Further progress

TMD evolution (double-scale evolution) and ζ-prescription [Scimemi,AV,1803.11089]
Rapidity divergences in operators [Scimemi,Tarasov,AV,1901.](sec.4.2)
Non-perturbative definition of RAD [Schaefer,AV,in progress]
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TMD evolution

arTeMiDe v1.4

Variety of evolutions
LO, NLO, NNLO
No restriction for NP models
Fast FORTRAN code + python-interface
(under development)
DY cross-sections
SIDIS cross-sections (not tuned yet)
Theory uncertainty bands

https://github.com/VladimirovAlexey/artemide-
public
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TMD evolution

Conformal-stereographic transformation

Cn̄ : {x+, x−, x⊥} → {
−1

2a

1

λ+ 2ax+
, x− +

ax2
⊥

λ+ 2ax+
,

x⊥
λ+ 2ax+

}

Translation – special conformal transformation (along n) – Translation
a and λ are free parameters
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TMD evolution

TMD evolution equations

µ2 d

dµ2
Ff←h(x, b;µ, ζ) =

γfF (µ, ζ)

2
Ff←h(x, b;µ, ζ), (3)

ζ
d

dζ
Ff←h(x, b;µ, ζ) = −Df (µ, b)Ff←h(x, b;µ, ζ), (4)

Solution: F (x,b;µf , ζf ) = R[b; (µf , ζf )→ (µi, ζi)]F (x,b;µi, ζi)

γF – TMD anomalous dimension

D – rapidity anomalous dimension (= − K̃
2
[Collins’ book], = K[Bacchetta, at

al,1703.10157])
Anomalous dimensions are universal, i.e. depend only on flavor (gluon/quark).
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TMD evolution

TMD evolution is two-dimensional

µ
2 d

dµ2

ζ
d

dζ

F =


γF

2

−D

F

−→
∇∇∇F =

−→
EF

−→
E is 2D evolution field
in −→ννν = (lnµ2, ln ζ)

coordinates

ln ζ

ln μ2

NLO b=0.5GeV
-1

Solution

R[(µf , ζf )→ (µi, ζi)] = exp

(∫
P
d−→ννν ·

−→
E

)
(µf , ζf )

(µi, ζi)

The integration path
is unimportant!
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TMD evolution

TMD distribution is not defined by a scale (µ, ζ)
It is defined by an equipotential line.

1 10 102

1

10

102

μ2 [GeV
2]

ζ
[G

e
V

2
]

The scaling is defined by
a difference between scales

a difference between potentials

TMD(x, b, 1)

TMD(x, b, 2)

TMD(x, b, 3)

We can enumerate them by a lines
not by (µ, ζ)

F (x, b;µ, ζ)→ F (z, b; line)
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TMD evolution

TMD distributions on the same equipotential line are equivalent.
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TMD evolution

The simplest way to measure the difference between potentials
ln ζ

ln μ2

3

2

1

Im
p
ro
ve
d
D

fi
xe
d
μ

(μ f ,ζ f )

(μi,ζi)

(μ f ,ζμ f )

μ0

Integration "difficult"

In
te
gr
at
io
n
el
em

en
ta
ry

R =
( ζf

ζµf

)−D(µf ,b)

Numerically simple (and fast).
Compare to

µf = Q thus as is small
It is different representation
of the Sudakov exponent.
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