Renormalization theorem for rapidity divergences \& rapidity anomalous dimension

Alexey A. Vladimirov

based on [1707.07606]

Institut für Theoretische Physik

Universität Regensburg
Munchen
Feb. 2019

Universitãt Regensburg

The talk is about

- transverse momentum dependent (TMD) factorization theorems,
- soft factors,
- rapidity divergences,
- rapidity anomalous dimension and TMD evolution,
- correspondence between different processes,
- and higher-loop calculations without loop-diagrams.
- introduction to TMD factorization,
- geometric/spatial definition of divergences,
- proof of renormalization theorem for rapidity divergences,
- correspondence between UV and rapidity divergences.

The modern factorization theorems have the following general structure

- This is a typical result of field mode separation (SCET)
- Often, individual terms in the product are singular, and require "refactorization"

The modern factorization theorems have the following general structure

$$
\underbrace{\frac{d \sigma}{d X}}_{\text {cross }-X}=\underbrace{H}_{\begin{array}{c}
\text { Hard part } \\
\text { perturbative }
\end{array}} \times \underbrace{f_{1} \otimes \ldots \otimes J_{2}}_{\begin{array}{c}
\text { Parton distributions } \\
\text { jet-functions, etc } \\
\text { Non-pertrubative } \\
\text { universal }
\end{array}} \times \underbrace{S}_{\begin{array}{c}
\text { Soft factor(s) } \\
\text { perturbative? }
\end{array}}+\begin{gathered}
\text { Some power }
\end{gathered}
$$

- This is a typical result of field mode separation (SCET)
- Often, individual terms in the product are singular, and require "refactorization"

In fact, some of parts of this construction are not proven/accurately formulated,
\Rightarrow problems for higher calculation of perturbation theory
\Rightarrow lack of "non-perturbative" definition for "non-perturbative functions"
\Rightarrow absence of restrictions on the approach (working criterion)

The modern factorization theorems have the following general structure

- This is a typical result of field mode separation (SCET)
- Often, individual terms in the product are singular, and require "refactorization"

In fact, some of parts of this construction are not proven/accurately formulated,
\Rightarrow problems for higher calculation of perturbation theory
\Rightarrow lack of "non-perturbative" definition for "non-perturbative functions"
\Rightarrow absence of restrictions on the approach (working criterion)

My talk is about factorization of soft factors and rapidity divergences, in TMD factorization theorems (but not only).

Introduction part I: TMD factorization

Transverse momentum dependent (TMD) factorization describes double-inclusive processes in the regime of small transverse momentum $\left(q_{T}^{2} \ll Q^{2}\right)$

$$
\begin{aligned}
\text { processes: } & h_{1}+h_{2} \rightarrow \gamma^{*} / Z / W+X \\
& h_{1}+\gamma^{*} \rightarrow h_{2}+X \\
& e^{+} e^{-} \rightarrow h_{1}+h_{2}+X
\end{aligned}
$$

"Drell-Yan"
semi-inclusive DIS (SIDIS)

TMD regime

The transverse momentum of photon q_{T} is determined with respect to "hadron plane"

In TMD regime the produced transverse momentum is mostly of "non-perturbative" origin: \Rightarrow TMD distributions (PDFs and FFs)

TMD distributions should not be mistaken with collinear distributions (although they have some common points).

- Structurally different: different divergences and different evolution.

$$
\frac{d \sigma}{d Q d y d^{2} q_{T}} \sim \int d^{4} x e^{i q x} \sum_{X}\left\langle h_{1}\right| J^{\mu}(x)\left|X ; h_{2}\right\rangle\left\langle X ; h_{2}\right| J^{\nu}(0)\left|h_{1}\right\rangle
$$

$$
\frac{d \sigma}{d Q d y d^{2} q_{T}} \sim \int d^{4} x e^{i q x} \sum_{X}\left\langle h_{1}\right| J^{\mu}(x)\left|X ; h_{2}\right\rangle\left\langle X ; h_{2}\right| J^{\nu}(0)\left|h_{1}\right\rangle
$$

All components of factorization formula contain rapidity divergences.
Within soft factor rapidity divergencs entangle PDF and FF

$$
S\left(\mathbf{b}_{T}\right)=\langle 0| \operatorname{Tr}\left(\mathbf{\Phi}_{n}\left(\mathbf{0}_{T}\right) \boldsymbol{\Phi}_{n}^{\dagger}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-n}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\left(\mathbf{0}_{T}\right)\right)|0\rangle
$$

Light-like vectors:

$$
\begin{gathered}
n^{2}=\bar{n}^{2}=0, \quad(n \cdot \bar{n})=1 \\
\text { Wilson line (ray) } \\
\mathbf{\Phi}_{v}(x)=P \exp \left(i g \int_{0}^{\infty} d \sigma v^{\mu} A_{\mu}^{A}(v \sigma+x) \mathbf{T}^{A}\right)
\end{gathered}
$$

Looks simple, but SF is a theoretician's nightmare.
Multiple divergences!

$$
S\left(\mathbf{b}_{T}\right)=\langle 0| \operatorname{Tr}\left(\boldsymbol{\Phi}_{n}\left(\mathbf{0}_{T}\right) \boldsymbol{\Phi}_{n}^{\dagger}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-n}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\left(\mathbf{0}_{T}\right)\right)|0\rangle
$$

$$
\begin{aligned}
\int d x d y & D(x-y) \\
& =\quad \int_{0}^{\infty} d x^{+} \int_{0}^{\infty} d y^{-} \frac{1}{x^{+} y^{-}} \\
& =\int_{0}^{\infty} \frac{d x^{+}}{x^{+}} \int_{0}^{\infty} \frac{d y^{-}}{y^{-}} \\
= & (\mathrm{UV}+\mathrm{IR})(\mathrm{UV}+\mathrm{IR})
\end{aligned}
$$

Some people set it to zero.

$$
S\left(\mathbf{b}_{T}\right)=\langle 0| \operatorname{Tr}\left(\boldsymbol{\Phi}_{n}\left(\mathbf{0}_{T}\right) \boldsymbol{\Phi}_{n}^{\dagger}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-n}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\left(\mathbf{0}_{T}\right)\right)|0\rangle
$$

$$
\begin{aligned}
\int d x & d y \quad D(x-y) \\
& =\quad \int_{0}^{\infty} d x^{+} \int_{0}^{\infty} d y^{-} \frac{1}{\left(2 x^{+} y^{-}+\mathbf{b}_{T}^{2}\right)} \\
= & \text { IR at } x, y \rightarrow \infty
\end{aligned}
$$

However, it exactly cancels IR from the previous diagram
Proved at all orders,
e.g.[Echevarria,Scimemi,AV,1511.05590]

$$
S\left(\mathbf{b}_{T}\right)=\langle 0| \operatorname{Tr}\left(\mathbf{\Phi}_{n}\left(\mathbf{0}_{T}\right) \boldsymbol{\Phi}_{n}^{\dagger}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-n}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\left(\mathbf{0}_{T}\right)\right)|0\rangle
$$

$$
\begin{aligned}
\int d x d y & D(x-y) \\
& =\underbrace{\int_{0}^{\infty} d x^{+} \int_{0}^{\infty} d y^{-} \frac{1}{\left(2 x^{+} y^{-}+\mathbf{b}_{T}^{2}\right)}}_{\text {rap.div }} \\
& =\underbrace{\int_{0}^{\infty} \frac{d \sigma}{\sigma}}_{\text {IR }} \int_{0}^{\infty} \frac{d L L}{\left(2 L^{2}+\mathbf{b}^{2}\right)}
\end{aligned}
$$

Rapidity divergence is a special kind of divergences, UV\& IR

Does not cancel.

Regularizations for rapidity divergences

- Rapidity divergences are not regularized by dim.reg.
- There are many regularizations:
- δ-regularization [Echevarria,Scimemi,AV,1511.05590],
- exponential-regularization [Li,Neill,Zhu,1604.00392],
- off-light-cone Wilson lines [Collins' textbook],
- analytical regularization [Chiu, et al,1104.0881],
- ...

The most important property of SF is that its logarithm is linear in $\ln \left(\delta^{+} \delta^{-}\right)$
(2-loop check [1511.05590])

$$
S\left(b_{T}\right)=\exp \left(A\left(b_{T}, \epsilon\right) \ln \left(\delta^{+} \delta^{-}\right)+B\left(b_{T}, \epsilon\right)\right)
$$

It allows to split rapidity divergences and define individual TMDs.

- Important note 1: the structure holds for arbitrary ϵ
- Important note 2: it is not obvious and will be proved here

$$
\exp \left(A \ln \left(\delta^{+} \delta^{-}\right)+B\right)=\exp \left(\frac{A}{2} \ln \left(\left(\delta^{+}\right)^{2} \zeta\right)+\frac{B}{2}\right) \exp \left(\frac{A}{2} \ln \left(\left(\delta^{-}\right)^{2} \zeta^{-1}\right)+\frac{B}{2}\right)
$$

$$
\begin{aligned}
& d \sigma \sim \int d^{2} b_{T} e^{-i(q b)_{T}} H\left(Q^{2}\right) \quad \Phi_{h 1}\left(z_{1}, b_{T}\right) S\left(b_{T}\right) \Delta_{h_{2}}\left(z_{2}, b_{T}\right)+Y \\
& \text { T } \\
& \text { spliting rapidity singularities } \\
& S\left(b_{T}\right) \rightarrow \sqrt{S\left(b_{T} ; \zeta^{+}\right)} \sqrt{S\left(b_{T} ; \zeta^{-}\right)} \\
& d \sigma \sim \int d^{2} b_{T} e^{-i(q b)_{T}} H\left(Q^{2}\right) F\left(z_{1}, b_{T} ; \zeta^{+}\right) D\left(z_{2}, b_{T} ; \zeta^{-}\right)+Y \\
& \text { X }
\end{aligned}
$$

The extra "factorization" introduces an extra scale ζ.
And corresponded evolution equation

$$
\zeta \frac{d}{d \zeta} F=\frac{A}{2} F=-\mathcal{D} F
$$

Rapidity anomalous dimension (RAD)

Introduction part II: Double Drell-Yan scattering

 \& multi-parton scattering soft factors
pictures from [1510.08696]

Double Drell-Yan scattering

- Experimental status is doubtful
- Collinear part of factorization is proved [Diehl,et al,1510.08696]
- In many aspects similar to TMD factorization
- The same problem of rapidity factorization, but enchanted by the matrix structure

Structure is similar to TMD Drell-Yan but now it contains COLOR
The soft factor is a matrix

Color structure makes a lot of difference

$$
F_{h 1}^{A} S^{A B} \bar{F}_{h 2}^{B} \xrightarrow{\text { singlets }}\left(F^{\mathbf{1}}, F^{\mathbf{8}}\right)\left(\begin{array}{cc}
S^{\mathbf{1 1}} & S^{\mathbf{1 8}} \\
S^{\mathbf{8 1}} & S^{88}
\end{array}\right)\binom{\bar{F}^{\mathbf{1}}}{\bar{F}^{8}}
$$

－Soft－factors $S^{\mathbf{i j}}$ are sum of Wilson loops and double Wilson loops（all possible connections）．
－Soft－factors are non－zero even in the integrated case．
－2－loop calculation［AV，1608．04920］：rapidity divergences factorize（as a product of matrices）\Rightarrow matrix evolution equation

Let's look at multi-parton scattering

- Just as double-parton, but multi..(four WL's \rightarrow arbitrary number WL's)
- Too many color-singlets, better to work with explicit color indices (color-multi-matrix)

$$
\begin{gathered}
\Sigma^{\left(a_{1} \ldots a_{N}\right) ;\left(d_{1} \ldots d_{N}\right)}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{N}\right)=\boldsymbol{\Sigma}\left(\mathbf{b}_{1, \ldots, N}\right) \\
\boldsymbol{\Sigma}(\{b\})=\langle 0| T\left\{\left[\boldsymbol{\Phi}_{-n} \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\right]\left(b_{N}\right) \ldots\left[\boldsymbol{\Phi}_{-n} \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\right]\left(b_{1}\right)\right\}|0\rangle
\end{gathered}
$$

Color-matrix notation

- All color flow in the same direction
- i 'th WL has generator \mathbf{T}_{i}
- In total the soft factor is color-neutral

$$
\sum_{i} \mathbf{T}_{i}=0
$$

- Color-neutrality \rightarrow gauge invariance + cancellation IR singularities

Let's look at multi-parton scattering

- Just as double-parton, but multi..(four WL's \rightarrow arbitrary number WL's)
- Too many color-singlets, better to work with explicit color indices (color-multi-matrix)

$$
\begin{array}{r}
\Sigma^{\left(a_{1} \ldots a_{N}\right) ;\left(d_{1} \ldots d_{N}\right)}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{N}\right)=\boldsymbol{\Sigma}\left(\mathbf{b}_{1, \ldots, N}\right) \\
\boldsymbol{\Sigma}(\{b\})=\langle 0| T\left\{\left[\boldsymbol{\Phi}_{-n} \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\right]\left(b_{N}\right) \ldots\left[\boldsymbol{\Phi}_{-n} \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\right]\left(b_{1}\right)\right\}|0\rangle
\end{array}
$$

Result at NNLO is amazingly simple

$$
\boldsymbol{\Sigma}\left(\mathbf{b}_{1, \ldots, N}\right)=\exp \left(-\sum_{i<j} \mathbf{T}_{i}^{A} \mathbf{T}_{j}^{A} \sigma\left(\mathbf{b}_{i j}\right)+\mathcal{O}\left(a_{s}^{3}\right)\right)
$$

- $\mathbf{T}_{i}^{A} \mathbf{T}_{j}^{A}=$ "dipole"
- $\mathcal{O}\left(a_{s}^{3}\right)$ contains also "color-multipole" terms
- Rapidity factorization for dipole part is straightforward (assuming TMD factorization)

These examples are parts of general picture, and could be described by single factorization/renormalization theorem.

Part I:
 Renormalization theorem for
 rapidity divergences

Universităt Regensburg

Rapidity divergences associated with different directions in the MPS soft factor could be factorized from each other. At any finite order of perturbation theory there exists the "rapidity divergence renormalization factor" \mathbf{R}_{n}, which contains only rapidity divergences associated with the direction n, such that the combination

$$
\boldsymbol{\Sigma}^{R}\left(\{b\}, \nu^{+}, \nu^{-}\right)=\mathbf{R}_{n}\left(\{b\}, \nu^{+}\right) \boldsymbol{\Sigma}(\{b\}) \mathbf{R}_{\bar{n}}^{\dagger}\left(\{b\}, \nu^{-}\right)
$$

is free of rapidity divergences.

- Implicitly, it has been expected for long time [Chiu,Jain,Neill,Rothstein,1104.0881]
- It is final block of the TMD factorization theorem (and also finalizes factorization for Double-DY)
- It has several non-trivial consequences.

Universitãt Regensburg

Next, I am going to sketch the proof.

- Typically, such theorems are proved by considering singularities of Feynman diagrams.
- I will present a completely different approach.
- In fact, the approach could appear more interesting and important then the theorem it self.
- I will skip a lot of details, please, ask questions or look into [AV;1707.07606]

Next, I am going to sketch the proof.

- Typically, such theorems are proved by considering singularities of Feynman diagrams.
- I will present a completely different approach.
- In fact, the approach could appear more interesting and important then the theorem it self.
- I will skip a lot of details, please, ask questions or look into [AV;1707.07606]

General picture of proof

- Isolate the spatial area of an operator which results into rapidity divergences.
- Invent a (conformal) transformation which map this area to a point (i.e. rapidity divergences to UV divergences)
- Using this transformation, and UV renormalization theorem, proof the theorem in CFT
- Generalize to QCD, using iteration procedure and restoration of conformal invariance at the QCD critical point.

Ultraviolet divergences (UV)

Localisation of fields in the vicinity of a point

$$
x^{2} \rightarrow 0
$$

WARNING: depends on gauge fixation condition

Mass divergences (IR)

Localisation of fields at the distant sphere

$$
x^{2} \rightarrow \infty
$$

WARNING: depends on gauge fixation condition

Collinear divergences (UV)

Localisation of fields in the vicinity of a light-like line $(x p) \rightarrow 0 \quad\left(p^{2}=0\right)$
see better definition [Erdogan,Sterman,1411.4588]

WARNING: depends on gauge fixation condition

Ultraviolet divergences (UV)

Localisation of fields in the vicinity of a distant transverse plane see better definition [AV,1707.07606]

Rapidity divergences associated with transverse planes (or better to say with the layer between the transverse plane and infinity). If we think of space-time as about a Riemann sphere, these planes are points at poles of Riemann sphere.

Universităt Regensburg

$$
\mathcal{C}_{\bar{n}}:\left\{x^{+}, x^{-}, x_{\perp}\right\} \rightarrow\left\{\frac{-1}{2 a} \frac{1}{\lambda+2 a x^{+}}, x^{-}+\frac{a x_{\perp}^{2}}{\lambda+2 a x^{+}}, \frac{x_{\perp}}{\lambda+2 a x^{+}}\right\}
$$

Composition of two conformal-stereographic transformations

$$
C_{n \bar{n}}=\mathcal{C}_{n} \mathcal{C}_{\bar{n}}=\mathcal{C}_{\bar{n}} \mathcal{C}_{n}
$$

With the special choice of parameters any DY-like soft factor transforms to a compact object.

Universitãt Regensburg

In conformal QFT rapidity divergences equivalent to UV divergences

- The UV renormalization imposes rapidity divergence renormalization

Universitāt Regensburg

In conformal QFT rapidity divergences equivalent to UV divergences

- The UV renormalization imposes rapidity divergence renormalization

Universitãt Regensburg

In conformal QFT rapidity divergences equivalent to UV divergences

- The UV renormalization imposes rapidity divergence renormalization
- There are also UV renormalization factors in cusps (we omit them for a moment)

In a conformal field theory rapidity divergences can be removed (renormalized) by a multiplicative factor.

$$
C_{n \bar{n}}^{-1}(\mathbf{Z}(\{v\}, \mu))=\mathbf{R}_{n}\left(\{b\}, \nu^{+}\right)
$$

Rapidity anomalous dimension (RAD)

$$
\mathbf{D}(\{b\})=\frac{1}{2} \mathbf{R}_{n}^{-1}\left(\{b\}, \nu^{+}\right) \nu^{+} \frac{d}{d \nu^{+}} \mathbf{R}_{n}\left(\{b\}, \nu^{+}\right),
$$

In CSS notation it is $-K$, in [Becher,Neubert] $F_{q \bar{q}}$, in SCET literature γ_{ν}.
(In CFT) DY-like Soft factors expresses as

$$
\boldsymbol{\Sigma}\left(\{b\}, \delta^{+}, \delta^{-}\right)=e^{2 \mathbf{D}(\{b\}) \ln \left(\delta^{+} / \nu^{+}\right)} \overbrace{\boldsymbol{\Sigma}_{0}\left(\{b\}, \nu^{2}\right)}^{\text {finite }} e^{2 \mathbf{D}^{\dagger}(\{b\}) \ln \left(\delta^{-} / \nu^{-}\right)},
$$

From conformal theory to QCD

QCD at the critical point

QCD is conformal in $4-2 \epsilon^{*}$ dimensions

$$
\beta\left(\epsilon^{*}\right)=0, \quad \Rightarrow \quad \epsilon^{*}=-a_{s} \beta_{0}-a_{s}^{2} \beta_{1}-\ldots
$$

It is very useful trick, allows to restore "conformal-violating" terms, see e.g.[Braun,Manashov, 1306.5644]

Universitãt Regensburg

From conformal theory to QCD

QCD at the critical point

QCD is conformal in $4-2 \epsilon^{*}$ dimensions

$$
\beta\left(\epsilon^{*}\right)=0, \quad \Rightarrow \quad \epsilon^{*}=-a_{s} \beta_{0}-a_{s}^{2} \beta_{1}-\ldots
$$

It is very useful trick, allows to restore "conformal-violating" terms, see e.g.[Braun,Manashov,1306.5644]

Thus, at $4-2 \epsilon^{*}$ dimensions, the rapidity renormalization theorem works.

Universităt Regensburg

RTRD works at any finite order of QCD
Proof by induction

- Important input: Counting of rap.div. is independent on number of dimensions
- Important input: At 1-loop QCD is conformal = RTRD hold.
- (1) All Leading divergences cancel by R.
- (2) Make shift $\epsilon^{*} \rightarrow \epsilon^{*}+\beta_{0} a_{s}$.
- (3) Modify R such that next-to-leading divegences cancel (it can be done perturbatively, thanks to a_{s})
- Repeat (2-3) N times, and got renormalization at a_{s}^{N+1} order.

RTRD works at any finite order of QCD
Proof by induction

- Important input: Counting of rap.div. is independent on number of dimensions
- Important input: At 1-loop QCD is conformal = RTRD hold.
- (1) All Leading divergences cancel by R.
- (2) Make shift $\epsilon^{*} \rightarrow \epsilon^{*}+\beta_{0} a_{s}$.
- (3) Modify R such that next-to-leading divegences cancel (it can be done perturbatively, thanks to a_{s})
- Repeat (2-3) N times, and got renormalization at a_{S}^{N+1} order.

Soft factor has the form

$$
\begin{gathered}
\boldsymbol{\Sigma}\left(\{b\}, \delta^{+}, \delta^{-}\right)=e^{2 \mathbf{D}(\{b\}) \ln \left(\delta^{+} / \nu^{+}\right)} \overbrace{\boldsymbol{\Sigma}_{0}\left(\{b\}, \nu^{2}\right)}^{\text {finite }} e^{2 \mathbf{D}^{\dagger}(\{b\}) \ln \left(\delta^{-} / \nu^{-}\right)} \\
\mathbf{D}_{\mathrm{QCD}} \neq \mathbf{D}_{\mathrm{CFT}}
\end{gathered}
$$

Example then it does not work (no factorization?)
There are talks about "dipole-like" TMD distributions that could appear in processes like

$$
p p \rightarrow h X \text { e.g. [Boer,et al,1607.01654] }
$$

However, it is straightforward to show that the factorization is necessarily broken (or has not a closed form)

Example then it does not work (no factorization?)
There are talks about "dipole-like" TMD distributions that could appear in processes like

$$
p p \rightarrow h X \text { e.g. [Boer,et al,1607.01654] }
$$

However, it is straightforward to show that the factorization is necessarily broken (or has not a closed form)

Example then it does not work (no factorization?)
There are talks about "dipole-like" TMD distributions that could appear in processes like

$$
p p \rightarrow h X \text { e.g. [Boer,et al,1607.01654] }
$$

However, it is straightforward to show that the factorization is necessarily broken (or has not a closed form)

- The renormalization of dipole recouple colors \rightarrow extra gauge link \rightarrow ala BK equation.

Consequences

- Factorization for multi-Drell-Yan process (and TMD factorization as a particular case)
- Generalized (matrix) CSS equation
- Correspondence between soft and rapidity anomalous dimensions
- Constraints of soft anomalous dimension.
- Equality of DY and SIDIS TMD soft factors (?)
- Many others ... (in progress)

Universitãt Regensburg

Part II:
 Correspondence between soft anomalous dimension (SAD) \& rapidity anomalous dimension (RAD)

Soft anomalous dimension (evolution of jet-production)
Scattering amplitude for n-massless partons (jets) at fixed angles

$$
\begin{gathered}
\mathcal{A}_{n}\left(\left\{v_{i}\right\}\right) \simeq \mathbf{H}_{n}\left(\left\{v_{i}\right\}, \mu\right) \prod_{i=1}^{n} \frac{J\left(p_{i}, \mu\right)}{\mathcal{J}\left(v_{i}, \mu\right)} \\
\frac{d \mathbf{H}_{n}\left(\left\{v_{i}\right\}, \mu\right)}{d \ln \mu}=\boldsymbol{\gamma}_{s}\left(\left\{v_{i}\right\}\right) \times \mathbf{H}_{n}\left(\left\{v_{i}\right\}, \mu\right) .
\end{gathered}
$$

$\boldsymbol{\gamma}_{s}\left(\left\{v_{i}\right\}\right)$ is SAD.

Rapidity anomalous dimension (evolution of multiPDs)
The rapidity-divergences renomalized multiPD defined

$$
\begin{gathered}
F_{f}\left(\{x\},\{b\}, \nu^{+}\right)=\boldsymbol{\Sigma}_{0}\left(\{b\}, \nu^{2}\right) \mathbf{R}^{\dagger-1}\left(\{b\}, \nu^{-}\right) \tilde{F}_{f}(\{x\},\{b\}) \\
\nu^{+} \frac{d}{d \nu^{+}} F\left(\{x\},\{b\}, \mu, \nu^{+}\right)=\frac{1}{2} \mathbf{D}(\{b\}, \mu) \times F\left(\{x\},\{b\}, \mu, \nu^{+}\right)
\end{gathered}
$$

$\mathbf{D}(\{b\}, \mu)$ is RAD.

Soft/rapidity anomalous dimension correspondence

The equivalence (under conformal transformation) between \mathbf{Z} and \mathbf{R} implies the equality between corresponding anomalous dimensions

$$
\gamma_{s}(\{v\})=2 \mathbf{D}(\{b\})
$$

It has been observed in $\mathcal{N}=4 \mathrm{SYM}[\mathrm{Li}, \mathrm{Zhu}, 1604.01404]$.

- UV anomalous dimension independent on ϵ
- Rapidity anomalous dimension does depend on ϵ
- At ϵ^{*} conformal symmetry of QCD is restored

Soft/rapidity anomalous dimension correspondence

The equivalence (under conformal transformation) between \mathbf{Z} and \mathbf{R} implies the equality between corresponding anomalous dimensions

$$
\gamma_{s}(\{v\})=2 \mathbf{D}(\{b\})
$$

It has been observed in $\mathcal{N}=4 \mathrm{SYM}[\mathrm{Li}, \mathrm{Zhu}, 1604.01404]$.

- UV anomalous dimension independent on ϵ
- Rapidity anomalous dimension does depend on ϵ
- At ϵ^{*} conformal symmetry of QCD is restored

In QCD

$$
\boldsymbol{\gamma}_{s}(\{v\})=2 \mathbf{D}\left(\{\mathbf{b}\}, \epsilon^{*}\right)
$$

- Exact relation!
- Connects different regimes of QCD
\rightarrow Lets test it.

Universităt Regensburg

$\boldsymbol{\gamma}_{s}(\{v\})=2 \mathbf{D}\left(\{\mathbf{b}\}, \epsilon^{*}\right)$

How to use it?

- Physical value is $\mathbf{D}(\{\mathbf{b}\}, 0)$
- $\epsilon^{*}=0-a_{s} \beta_{0}-a_{s}^{2} \beta_{1}-a_{s}^{3} \beta_{2}-\ldots$
- We can compare order by order in PT

$$
\begin{aligned}
& \mathbf{D}_{1}(\{b\})=\frac{1}{2} \boldsymbol{\gamma}_{1}(\{v\}), \\
& \mathbf{D}_{2}(\{b\})=\frac{1}{2} \boldsymbol{\gamma}_{2}(\{v\})+\beta_{0} \mathbf{D}_{1}^{\prime}(\{b\}), \\
& \mathbf{D}_{3}(\{b\})=\frac{1}{2} \boldsymbol{\gamma}_{3}(\{v\})+\beta_{0} \mathbf{D}_{2}^{\prime}(\{b\})+\beta_{1} \mathbf{D}_{1}^{\prime}(\{b\})-\frac{\beta_{0}^{2}}{2} \mathbf{D}_{1}^{\prime \prime}(\{b\}),
\end{aligned}
$$

Universitãt Regensburg

TMD rapidity anomalous dimension

2-loop expression for RAD

$$
\mathcal{D}_{1}\left(\mathbf{b}^{2}, \epsilon\right)=-2 a_{s} C_{F}\left[\left(\frac{\mathbf{b}^{2}}{4}\right)^{\epsilon} \Gamma(-\epsilon)+\frac{1}{\epsilon}\right]=a_{s} C_{F}\{2 \mathbf{L}_{\mu}+\epsilon \underbrace{\left(\mathbf{L}_{\mu}^{2}+\zeta_{2}\right)}_{D_{1}^{\prime}}+\ldots\}
$$

Taking

$$
\begin{equation*}
\gamma_{s}=C_{F} a_{s}\left(\Gamma_{0} \mathcal{L}_{\mu}-\tilde{\gamma}_{0}\right)+C_{F} a_{s}^{2}\left(\Gamma_{1} \mathcal{L}_{\mu}-\tilde{\gamma}_{1}\right)+\ldots \tag{1}
\end{equation*}
$$

We find

$$
\begin{equation*}
\mathcal{D}_{2}\left(\mathbf{b}^{2}, 0\right)=C_{F}(\beta_{0} \mathbf{L}_{\mu}^{2}+\frac{\Gamma_{1}}{2} \mathbf{L}_{\mu} \underbrace{-\frac{\tilde{\gamma}_{1}}{2}+\beta_{0} \zeta_{2}}_{d^{(2,0)}}) \tag{2}
\end{equation*}
$$

It coincides with the direct calculation [Echevarria,Scimemi,AV,1511.05590].

TMD rapidity anomalous dimension

3-loop expression for RAD

$$
\begin{aligned}
\mathcal{D}_{2}\left(\mathbf{b}^{2}, \epsilon\right)= & a_{s}^{2} C_{F}\left\{\boldsymbol { B } ^ { 2 \epsilon } \Gamma ^ { 2 } (- \epsilon) \left(C_{A}\left(2 \psi_{-2 \epsilon}-2 \psi_{-\epsilon}+\psi_{\epsilon}+\gamma_{E}\right)\right.\right. \\
& \left.\left.+\frac{1-\epsilon}{(1-2 \epsilon)(3-2 \epsilon)}\left(\frac{3(4-3 \epsilon)}{2 \epsilon} C_{A}-N_{f}\right)\right)+B^{\epsilon} \frac{\Gamma(-\epsilon)}{\epsilon} \beta_{0}+\frac{\beta_{0}}{2 \epsilon^{2}}-\frac{\Gamma_{1}}{2 \epsilon}\right\}
\end{aligned}
$$

Taking

$$
\gamma_{s}=C_{F} a_{s}\left(\Gamma_{0} \mathcal{L}_{\mu}-\tilde{\gamma}_{0}\right)+C_{F} a_{s}^{2}\left(\Gamma_{1} \mathcal{L}_{\mu}-\tilde{\gamma}_{1}\right)+C_{F} a_{s}^{3}\left(\Gamma_{2} \mathcal{L}_{\mu}-\tilde{\gamma}_{2}\right)+\ldots
$$

We find

$$
\mathcal{D}_{3}\left(\mathbf{b}^{2}, 0\right)=\operatorname{logs}-\frac{\tilde{\gamma}_{2}}{2}+\left(\beta_{1}+\beta_{0} \Gamma_{1}\right) \zeta_{2}-\frac{2}{3} \beta_{0}^{2} \zeta_{3}+\beta_{0}\left\{C_{A}\left(\frac{2428}{81}-26 \zeta_{4}\right)-N_{f} \frac{328}{81}\right\}
$$

It coincides with the direct calculation [Li,Zhu,1604.01404].

$$
\begin{aligned}
\mathcal{D}_{L=0}^{(3)}= & -\frac{C_{A}^{2}}{2}\left(\frac{12328}{27} \zeta_{3}-\frac{88}{3} \zeta_{2} \zeta_{3}-192 \zeta_{5}-\frac{297029}{729}+\frac{6392}{81} \zeta_{2}+\frac{154}{3} \zeta_{4}\right) \\
& -\frac{C_{A} N_{f}}{2}\left(-\frac{904}{27} \zeta_{3}+\frac{62626}{729}-\frac{824}{81} \zeta_{2}+\frac{20}{3} \zeta_{4}\right)- \\
& \frac{C_{F} N_{f}}{2}\left(-\frac{304}{9} \zeta_{3}+\frac{1711}{27}-16 \zeta_{4}\right)-\frac{N_{f}^{2}}{2}\left(-\frac{32}{9} \zeta_{3}-\frac{1856}{729}\right)
\end{aligned}
$$

Quadrupole part of SAD

$$
\begin{aligned}
\boldsymbol{\gamma}_{s}(\{v\})= & -\frac{1}{2} \sum_{[i, j]} \mathbf{T}_{i}^{A} \mathbf{T}_{j}^{A} \gamma_{\text {dipole }}\left(v_{i} \cdot v_{j}\right)-\sum_{[i, j, k, l]} i f^{A C E} i f^{E B D} \mathbf{T}_{i}^{A} \mathbf{T}_{j}^{B} \mathbf{T}_{k}^{C} \mathbf{T}_{l}^{D} \mathcal{F}_{i j k l} \\
& -\sum_{[i, j, k]} \mathbf{T}_{i}^{\{A B\}} \mathbf{T}_{j}^{C} \mathbf{T}_{k}^{D} i f^{A C E} i f^{E B D} C+\mathcal{O}\left(a_{s}^{4}\right),
\end{aligned}
$$

Quadrupole part has been calculated in [Almelid,Duhr,Gardi;1507.00047]

$$
\begin{aligned}
\tilde{C} & =a_{s}^{3}\left(\zeta_{2} \zeta_{3}+\frac{\zeta_{5}}{2}\right)+\mathcal{O}\left(a_{s}^{4}\right), \\
\tilde{\mathcal{F}}_{i j k l}(\{b\}) & =8 a_{s}^{3} \mathcal{F}\left(\tilde{\rho}_{i k j l}, \tilde{\rho}_{i l j k}\right)+\mathcal{O}\left(a_{s}^{4}\right),
\end{aligned}
$$

Quadrupole part of RAD

- Color structures are not affected by ϵ^{*}
- Quadrupole contribution depends only on conformal ratios

$$
\rho_{i j k l}=\frac{\left(v_{i} \cdot v_{j}\right)\left(v_{k} \cdot v_{l}\right)}{\left(v_{i} \cdot v_{k}\right)\left(v_{j} \cdot v_{l}\right)} \leftrightarrow \quad \leftrightarrow \quad \tilde{\rho}_{i j k l}=\frac{\left(b_{i}-b_{j}\right)^{2}\left(b_{k}-b_{l}\right)^{2}}{\left(b_{i}-b_{k}\right)^{2}\left(b_{j}-b_{l}\right)^{2}}
$$

Conclusion

Universitãt Regensburg

Global extraction of F_{1} and RAD at NNLO by [Bertone, Scimemi \& AV,1902.????]

TMD evolution is a key element
$\frac{\chi_{\text {global }}^{2}}{\text { d.o.f. }} \simeq 1.15$
Here:

- 3-loop evolution
- 2-loop coefficient function
- 2-loop matching
- ζ-prescription

Non－perturbative part of RAD
At large－b RAD became non－perturbative and must be extracted from the data together with TMDs．

Universităt Regensburg

Renormalization theorem for rapidity divergences

- Rapidity divergences in DY-like soft factors can be renomalized (just like UV divergences).
- Conformal-stereographic projection provides simple criterion of renormalizability.
- It results to a consistent definition of TMD distributions, DPDs, multi-PDs.

Further progress

- TMD evolution (double-scale evolution) and ζ-prescription [Scimemi,AV,1803.11089]
- Rapidity divergences in operators [Scimemi,Tarasov,AV,1901.](sec.4.2)
- Non-perturbative definition of RAD [Schaefer,AV,in progress]

Universităt Regensburg

- Variety of evolutions
- LO, NLO, NNLO
- No restriction for NP models
- Fast FORTRAN code + python-interface (under development)
- DY cross-sections
- SIDIS cross-sections (not tuned yet)
- Theory uncertainty bands
https://github.com/VladimirovAlexey/artemidepublic

Universităt Regensburg

Conformal-stereographic transformation

$$
\mathcal{C}_{\bar{n}}:\left\{x^{+}, x^{-}, x_{\perp}\right\} \rightarrow\left\{\frac{-1}{2 a} \frac{1}{\lambda+2 a x^{+}}, x^{-}+\frac{a x_{\perp}^{2}}{\lambda+2 a x^{+}}, \frac{x_{\perp}}{\lambda+2 a x^{+}}\right\}
$$

- Translation - special conformal transformation (along n) - Translation
- a and λ are free parameters

Conformal-stereographic transformation

$$
\mathcal{C}_{\bar{n}}:\left\{x^{+}, x^{-}, x_{\perp}\right\} \rightarrow\left\{\frac{-1}{2 a} \frac{1}{\lambda+2 a x^{+}}, x^{-}+\frac{a x_{\perp}^{2}}{\lambda+2 a x^{+}}, \frac{x_{\perp}}{\lambda+2 a x^{+}}\right\}
$$

- Translation - special conformal transformation (along n) - Translation
- a and λ are free parameters

Universităt Regensburg

Conformal-stereographic transformation

$$
\mathcal{C}_{\bar{n}}:\left\{x^{+}, x^{-}, x_{\perp}\right\} \rightarrow\left\{\frac{-1}{2 a} \frac{1}{\lambda+2 a x^{+}}, x^{-}+\frac{a x_{\perp}^{2}}{\lambda+2 a x^{+}}, \frac{x_{\perp}}{\lambda+2 a x^{+}}\right\}
$$

- Translation - special conformal transformation (along n) - Translation
- a and λ are free parameters

Universităt Regensburg

Conformal-stereographic transformation

$$
\mathcal{C}_{\bar{n}}:\left\{x^{+}, x^{-}, x_{\perp}\right\} \rightarrow\left\{\frac{-1}{2 a} \frac{1}{\lambda+2 a x^{+}}, x^{-}+\frac{a x_{\perp}^{2}}{\lambda+2 a x^{+}}, \frac{x_{\perp}}{\lambda+2 a x^{+}}\right\}
$$

- Translation - special conformal transformation (along n) - Translation
- a and λ are free parameters

Universităt Regensburg

Conformal-stereographic transformation

$$
\mathcal{C}_{\bar{n}}:\left\{x^{+}, x^{-}, x_{\perp}\right\} \rightarrow\left\{\frac{-1}{2 a} \frac{1}{\lambda+2 a x^{+}}, x^{-}+\frac{a x_{\perp}^{2}}{\lambda+2 a x^{+}}, \frac{x_{\perp}}{\lambda+2 a x^{+}}\right\}
$$

- Translation - special conformal transformation (along n) - Translation
- a and λ are free parameters

Universităt Regensburg

TMD evolution equations

$$
\begin{align*}
\mu^{2} \frac{d}{d \mu^{2}} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =\frac{\gamma_{F}^{f}(\mu, \zeta)}{2} F_{f \leftarrow h}(x, b ; \mu, \zeta), \tag{3}\\
\zeta \frac{d}{d \zeta} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =-\mathcal{D}^{f}(\mu, b) F_{f \leftarrow h}(x, b ; \mu, \zeta), \tag{4}
\end{align*}
$$

Solution: $\quad F\left(x, \mathbf{b} ; \mu_{f}, \zeta_{f}\right)=R\left[\mathbf{b} ;\left(\mu_{f}, \zeta_{f}\right) \rightarrow\left(\mu_{i}, \zeta_{i}\right)\right] F\left(x, \mathbf{b} ; \mu_{i}, \zeta_{i}\right)$

- γ_{F} - TMD anomalous dimension
- \mathcal{D} - rapidity anomalous dimension $\left(=-\frac{\tilde{K}}{2}[\right.$ Collins' book $],=K[$ Bacchetta, at al,1703.10157])
- Anomalous dimensions are universal, i.e. depend only on flavor (gluon/quark).

TMD evolution is two-dimensional

TMD evolution is two-dimensional

TMD evolution is two-dimensional

TMD distribution is not defined by a scale (μ, ζ)
It is defined by an equipotential line．

The scaling is defined by a difference between scales
a difference between potentials

TMD distribution is not defined by a scale (μ, ζ)
It is defined by an equipotential line.

The scaling is defined by a difference between scales
a difference between potentials

Evolution factor to both points is the same
although the scales are different by $10^{2} \mathrm{GeV}^{2}$

TMD distributions on the same equipotential line are equivalent.

TMD distributions on the same equipotential line are equivalent.

The simplest way to measure the difference between potentials

$$
R=\left(\frac{\zeta_{f}}{\zeta_{\mu_{f}}}\right)^{-\mathcal{D}\left(\mu_{f}, b\right)}
$$

- Numerically simple (and fast). Compare to $\times \exp \left\{\ln \frac{\sqrt{\zeta_{\lambda}}}{\mu_{b}} \tilde{K}\left(b_{*}: \mu_{b}\right)+\int_{\mu_{n}}^{\mu} \frac{\mathrm{d} \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{d}\left(g\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{\sqrt{\zeta_{\lambda}}}{\mu^{\prime}} \gamma_{K}\left(g\left(\mu^{\prime}\right)\right)\right]\right\}$.
- $\mu_{f}=Q$ thus a_{s} is small
- It is different representation of the Sudakov exponent.

