Extraction of
 transverse momentum dependent parton distributions

Alexey Vladimirov
based on [1902.08474]

I will present (recent) extraction of unpolarized transverse momentum dependent parton distribution functions (TMDPDF)

The work is unique in several aspects

- The first full-NNLO extraction of uTMDPDF

NNLO attempt [I.Scimemi,AV,1707.07606]
NNLL/NLO [U.D'Alesio,et al,1407.3311] plenty of NLL/LO e.g [A.Bacchetta,et al,1703.10157]

- Largest set of Drell-Yan data (including LHC data)
- Consistent theory treatment (based on ζ-prescription)

Outline of talk

- Some details about TMD factorization
- Some details about fitting procedure
- Results of extraction
- Future directions

Universitãt Regensburg

Transverse momentum distributions of leading order

+8 gluon TMDs
+2 (or 8) TMD fragmentation function

+ non-perturbative evolution kernel

Transverse momentum distributions of leading order

Why unpolarized TMDPDF especially important?

Each TMD factorized cross-section has three NP functions

$$
\frac{d \sigma}{d p_{T}^{2} d Q} \simeq \sigma_{0}(Q) \int d^{2} \mathbf{b} e^{i \mathbf{b}_{T}} R[Q \rightarrow(\mu, \zeta)]^{2} F_{1}\left(x_{1}, \mathbf{b} ; \mu, \zeta\right) F_{2}\left(x_{2}, \mathbf{b} ; \mu, \zeta\right)
$$

- Two TMD distributions $F_{1} \& F_{2}$
- non-perturbative evolution $R \sim \exp (-\mathcal{D})$

Universităt Regensburg

Why unpolarized TMDPDF especially important?

Each TMD factorized cross-section has three NP functions

$$
\frac{d \sigma}{d p_{T}^{2} d Q} \simeq \sigma_{0}(Q) \int d^{2} \mathbf{b} e^{i \mathbf{b}_{T}} R[Q \rightarrow(\mu, \zeta)]^{2} F_{1}\left(x_{1}, \mathbf{b} ; \mu, \zeta\right) F_{2}\left(x_{2}, \mathbf{b} ; \mu, \zeta\right)
$$

- Two TMD distributions $F_{1} \& F_{2}$
- non-perturbative evolution $R \sim \exp (-\mathcal{D})$

Theory

Cross-section for Drell-Yan process (DY)

$$
h_{1}+h_{2} \rightarrow \gamma^{*} / Z\left(\rightarrow l l^{\prime}\right)+X
$$

$$
\frac{d \sigma}{d y d Q^{2} d^{2} \mathbf{q}_{T}}=\sigma_{0} \int d^{2} b e^{i\left(\mathbf{b} \cdot \mathbf{q}_{T}\right)} H_{f f^{\prime}}(Q, \mu) F_{f \leftarrow h}\left(x_{1}, b ; \mu, Q^{2}\right) F_{f^{\prime} \leftarrow h}\left(x_{2}, b ; \mu, Q^{2}\right)+\ldots
$$

Kinematics

$$
\begin{aligned}
& p_{1}^{\mu}=\bar{n}^{\mu} p_{1}^{+}+\frac{M^{2}}{2 p_{1}^{+}} n^{\mu} \\
& p_{2}^{\mu}=n^{\mu} p_{2}^{+}+\frac{M^{2}}{2 p_{2}^{+}} \bar{n}^{\mu}
\end{aligned}
$$

$$
\begin{gathered}
\left(p_{1}+p_{2}\right)^{2}=s \\
q^{2}=\left(l+l^{\prime}\right)^{2}=Q^{2} \\
x_{1}=\frac{q^{+}}{p_{1}^{+}}=\sqrt{\frac{Q^{2}+\mathbf{q}_{T}^{2}}{s}} e^{y}
\end{gathered}
$$

p_{1}, p_{2} define scattering plane

$$
x_{2}=\frac{q^{+}}{p_{1}^{+}}=\sqrt{\frac{Q^{2}+\mathbf{q}_{T}^{2}}{s}} e^{-y}
$$

$$
q=\left[q^{+}, q^{-}, \mathbf{q}_{T}\right]=\left[\sqrt{\frac{Q^{2}+\mathbf{q}_{T}^{2}}{2}} e^{y}, \sqrt{\frac{Q^{2}+\mathbf{q}_{T}^{2}}{2}} e^{-y}, \mathbf{q}_{T}\right]
$$

$$
\frac{d \sigma}{d y d Q^{2} d^{2} \mathbf{q}_{T}}=\sigma_{0} \int d^{2} b e^{i\left(\mathbf{b} \cdot \mathbf{q}_{T}\right)} H_{f f^{\prime}}(Q, \mu) F_{f \leftarrow h}\left(x_{1}, b ; \mu, Q^{2}\right) F_{f^{\prime} \leftarrow h}\left(x_{2}, b ; \mu, Q^{2}\right)+\ldots
$$

TMD evolution is given by 2 equations

$$
\mu^{2} \frac{d F(x, b ; \mu, \zeta)}{d \mu^{2}}=\gamma_{F}(\mu, \zeta) F(x, b ; \mu, \zeta), \quad \zeta \frac{d F(x, b ; \mu, \zeta)}{d \zeta}=-\mathcal{D}(\mu, b) F(x, b ; \mu, \zeta)
$$

$$
\frac{d \sigma}{d y d Q^{2} d^{2} \mathbf{q}_{T}}=\sigma_{0} \int d^{2} b e^{i\left(\mathbf{b} \cdot \mathbf{q}_{T}\right)} H_{f f^{\prime}}(Q, \mu) F_{f \leftarrow h}\left(x_{1}, b ; \mu, Q^{2}\right) F_{f^{\prime} \leftarrow h}\left(x_{2}, b ; \mu, Q^{2}\right)+\ldots
$$

TMD evolution is given by 2 equations

$$
\mu^{2} \frac{d F(x, b ; \mu, \zeta)}{d \mu^{2}}=\gamma_{F}(\mu, \zeta) F(x, b ; \mu, \zeta), \quad \zeta \frac{d F(x, b ; \mu, \zeta)}{d \zeta}=-\mathcal{D}(\mu, b) F(x, b ; \mu, \zeta)
$$

Universitãt Regensburg

$$
\frac{d \sigma}{d y d Q^{2} d^{2} \mathbf{q}_{T}}=\sigma_{0} \int d^{2} b e^{i\left(\mathbf{b} \cdot \mathbf{q}_{T}\right)} H_{f f^{\prime}}(Q, \mu) F_{f \leftarrow h}\left(x_{1}, b ; \mu, Q^{2}\right) F_{f^{\prime} \leftarrow h}\left(x_{2}, b ; \mu, Q^{2}\right)+\ldots
$$

TMD evolution is given by 2 equations

$$
\mu^{2} \frac{d F(x, b ; \mu, \zeta)}{d \mu^{2}}=\gamma_{F}(\mu, \zeta) F(x, b ; \mu, \zeta), \quad \zeta \frac{d F(x, b ; \mu, \zeta)}{d \zeta}=-\mathcal{D}(\mu, b) F(x, b ; \mu, \zeta)
$$

Solution

$$
F\left(x, \mathbf{b} ; \mu_{1}, \zeta_{1}\right)=R\left[\mathbf{b} ;\left(\mu_{1}, \zeta_{1}\right) \rightarrow\left(\mu_{2}, \zeta_{2}\right)\right] F\left(x, \mathbf{b} ; \mu_{2}, \zeta_{2}\right)
$$

Initial scales:
$\mu_{1} \simeq Q$
$\zeta_{1}=Q^{2}$

Universitãt Regensburg

$$
F\left(x, \mathbf{b} ; \mu_{1}, \zeta_{1}\right)=R\left[\mathbf{b} ;\left(\mu_{1}, \zeta_{1}\right) \rightarrow\left(\mu_{2}, \zeta_{2}\right)\right] F\left(x, \mathbf{b} ; \mu_{2}, \zeta_{2}\right)
$$

Initial scales:
 $\mu_{1} \simeq Q$
 $\zeta_{1}=Q^{2}$

Final scales:
$\mu_{2} \sim$??
$\zeta_{2} \sim$??

Main complication:
$\mathbf{b}^{2} \in(0, \infty)$
perturbative logarithms $\ln \left(\mathbf{b}^{2} \mu^{2}\right), \ln \left(\mathbf{b}^{2} \zeta\right), \ln \left(\mu^{2} / \zeta\right)$

Universitãt Regensburg

Solution

$$
F\left(x, \mathbf{b} ; \mu_{1}, \zeta_{1}\right)=R\left[\mathbf{b} ;\left(\mu_{1}, \zeta_{1}\right) \rightarrow\left(\mu_{2}, \zeta_{2}\right)\right] F\left(x, \mathbf{b} ; \mu_{2}, \zeta_{2}\right)
$$

Initial scales:

$\mu_{1} \simeq Q$
$\zeta_{1}=Q^{2}$

Final scales:
$\mu_{2} \sim$??
$\zeta_{2} \sim$??

Main complication:

$$
\mathbf{b}^{2} \in(0, \infty)
$$

$$
\text { perturbative logarithms } \ln \left(\mathbf{b}^{2} \mu^{2}\right), \ln \left(\mathbf{b}^{2} \zeta\right), \ln \left(\mu^{2} / \zeta\right)
$$

Approaches

- CSS [Collins,Soper,Sterman,1984]

$$
\mu=\mu^{*}(\mathbf{b}) \sim\left\{\begin{array}{cl}
1 / \mathbf{b} & \mathbf{b} \rightarrow 0, \\
\text { const } & \mathbf{b} \gg 0,
\end{array} \quad \zeta=\mu^{2}\right.
$$

- Formally, no large-logarithms in perturbative regeme
- Extremely unstable perturbative expression
- Commonly used LO approach, but useless at NNLO

Solution

$$
F\left(x, \mathbf{b} ; \mu_{1}, \zeta_{1}\right)=R\left[\mathbf{b} ;\left(\mu_{1}, \zeta_{1}\right) \rightarrow\left(\mu_{2}, \zeta_{2}\right)\right] F\left(x, \mathbf{b} ; \mu_{2}, \zeta_{2}\right)
$$

Main complication:

$$
\mathbf{b}^{2} \in(0, \infty)
$$

perturbative logarithms $\ln \left(\mathbf{b}^{2} \mu^{2}\right), \ln \left(\mathbf{b}^{2} \zeta\right), \ln \left(\mu^{2} / \zeta\right)$

Approaches

- ζ-prescription [I.Scimemi,AV,1803.11089]

$$
\mu=\text { doesn't matter }, \quad \zeta=\zeta_{\mu}
$$

- Formally, no large-logarithms in perturbative regeme
- Stable perturbative expression
- Universal definition
- Let $\mu \simeq Q$

ζ-prescription

TMD evolution is 2 D evolution

$$
\begin{aligned}
\mu^{2} \frac{d F(x, b ; \mu, \zeta)}{d \mu^{2}} & =\gamma_{F}(\mu, \zeta) F(x, b ; \mu, \zeta) \\
\zeta \frac{d F(x, b ; \mu, \zeta)}{d \zeta} & =-\mathcal{D}(\mu, b) F(x, b ; \mu, \zeta)
\end{aligned}
$$

Evolution field
is conservative
Evol.potential:

$$
\begin{aligned}
& \mathbf{E}=\left(\frac{\gamma_{F}}{2},-\mathcal{D}\right) \\
& \vec{\nabla} \times \overrightarrow{\mathbf{E}}=0 \\
& \mathbf{E}=\nabla U
\end{aligned}
$$

ζ-prescription

TMD evolution is 2 D evolution

$$
\begin{aligned}
& R[\mathbf{b} ; i \rightarrow f]= \\
& \exp \int_{P} d \boldsymbol{\nu} \cdot \mathbf{E}=\exp \left(U_{f}-U_{i}\right)= \\
& \exp \left[\int_{P}\left(\gamma_{F}(\mu, \zeta) \frac{d \mu}{\mu}-\mathcal{D}(\mu, \mathbf{b}) \frac{d \zeta}{\zeta}\right)\right]
\end{aligned}
$$

- Path independence
- Unified picture of various evolution scenarios

Evolution field	$\mathbf{E}=\left(\frac{\gamma_{F}}{2},-\mathcal{D}\right)$
is conservative	$\vec{\nabla} \times \overrightarrow{\mathbf{E}}=0$
Evol.potential:	$\mathbf{E}=\nabla U$

TMD distribution is not defined by a scale (μ, ζ) It is defined by an equipotential line.

The scaling is defined by a difference between scales a difference between potentials

TMD distribution is not defined by a scale (μ, ζ) It is defined by an equipotential line．

The scaling is defined by a difference between scales a difference between potentials

Evolution factor to both points is the same although the scales are different by $10^{2} \mathrm{GeV}^{2}$

Universitãt Regensburg

TMD distributions on the same equipotential line are equivalent.

Universal scale-independent TMD

There is a unique line which passes though all μ 's
The optimal TMD distribution
$F(x, b)=F\left(x, b ; \mu, \zeta_{\mu}\right)$
where ζ_{μ} is the special line.

(
Universitãt Regensburg

The evolution potential depends on b.

Relative position of its elements (saddle-point, special lines) dictates the shape of evolution factor.

Evolution factor has simple expression

$$
R[\mathbf{b} ;(\mu, \zeta) \rightarrow \text { s.l. }]=\left(\frac{\zeta}{\zeta_{\mu}}\right)^{-\mathcal{D}(\mathbf{b}, \mu)}
$$

Good PT convergence $\mu=Q$

Essential feature of TMD phenomenology: perturbative and non-perturbative (NP) in the same expression

$$
\begin{aligned}
\frac{d \sigma}{d y d Q^{2} d^{2} \mathbf{q}_{T}}= & \sigma_{0} \int d^{2} b e^{i\left(\mathbf{b} \cdot \mathbf{q}_{T}\right)} H_{f f^{\prime}}(Q, \mu) \frac{R\left[\mathbf{b} ;\left(\mu, Q^{2}\right) \rightarrow \text { s.l. }\right]^{2}}{\frac{F_{f \leftarrow h}\left(x_{1}, b\right)}{F_{f^{\prime} \leftarrow h}\left(x_{2}, b\right)}}+\ldots \\
& \underbrace{}_{\text {Rapidity AD is (generally) NP }}
\end{aligned}
$$

Universitãt Regensburg

Essential feature of TMD phenomenology: perturbative and non-perturbative (NP) in the same expression

$$
\left.\begin{array}{rl}
\frac{d \sigma}{d y d Q^{2} d^{2} \mathbf{q}_{T}}= & \sigma_{0} \int d^{2} b e^{i\left(\mathbf{b} \cdot \mathbf{q}_{T}\right)} H_{f f^{\prime}}(Q, \mu) \frac{R\left[\mathbf{b} ;\left(\mu, Q^{2}\right) \rightarrow \text { s.l. }\right]^{2}}{} \frac{F_{f \leftarrow h}\left(x_{1}, b\right)}{F_{f^{\prime} \leftarrow h}\left(x_{2}, b\right)}
\end{array}\right) \ldots
$$

General rule:

\checkmark small-b: $\mathbf{b} \ll B$ perturbative OPE

- intermediate-b: $\mathbf{b} \sim B$
"interpolation"
\rightarrow large- $\mathrm{b}: \mathbf{b} \gg B$ non-perturbative model

Universitãt Regensburg

Matching for TMDPDF

In order to reduce model-dependence one builds an anzats such that it respects OPE at small-b.
This is called "small-b matching"

$$
F_{f \leftarrow h}(x, \mathbf{b}) \simeq \sum_{f^{\prime}} \int_{x}^{1} \frac{d z}{z} C_{f \leftarrow f^{\prime}}\left(z ; \mu_{\mathrm{OPE}}, \ln \left[\mathbf{b}^{2} \mu_{\mathrm{OPE}}^{2}\right]\right) f_{f^{\prime} \rightarrow h}\left(\frac{x}{z}, \mu_{\mathrm{OPE}}\right)+\mathbf{b}^{2}[\ldots]+\ldots
$$

Matching for TMDPDF

In order to reduce model-dependence one builds an anzats such that it respects OPE at small-b.
This is called "small-b matching"

$$
F_{f \leftarrow h}(x, \mathbf{b}) \simeq \sum_{f^{\prime}} \int_{x}^{1} \frac{d z}{z} C_{f \leftarrow f^{\prime}}\left(z ; \mu_{\mathrm{OPE}}, \ln \left[\mathbf{b}^{2} \mu_{\mathrm{OPE}}^{2}\right]\right) f_{f^{\prime} \rightarrow h}\left(\frac{x}{z}, \mu_{\mathrm{OPE}}\right)\left\{1+\mathbf{b}^{2}[\ldots]+\ldots\right\}
$$

Universitãt Regensburg

Matching for TMDPDF

In order to reduce model-dependence one builds an anzats such that it respects OPE at small-b.
This is called "small-b matching"

$$
F_{f \leftarrow h}(x, \mathbf{b})=\sum_{f^{\prime}} \int_{x}^{1} \frac{d z}{z} C_{f \leftarrow f^{\prime}}\left(z ; \mu_{\mathrm{OPE}}, \ln \left[\mathbf{b}^{2} \mu_{\mathrm{OPE}}^{2}\right]\right) f_{f^{\prime} \rightarrow h}\left(\frac{x}{z}, \mu_{\mathrm{OPE}}\right) f_{\mathrm{NP}}^{f^{\prime} \leftarrow h}\left(x, z, \mathbf{b}^{2}\right)
$$

- $f_{\mathrm{NP}}\left(x, z, \mathbf{b}^{2} \sim 0\right) \sim 1$
- In ζ-prescription all scaling properties are respected!
f_{NP} is subject of fitting

Matching for \mathcal{D}

Rapidity anomalous dimension can be expressed as vacuum matrix element of known operator

$$
\mathcal{D}(\mu, \mathbf{b})=\frac{i g \frac{\operatorname{Tr}}{N_{c}} \int_{0}^{1} d \beta\langle 0| F^{+\mathbf{b}}\left(-\Lambda_{+} n+\mathbf{b} \beta\right)[\mathrm{SF} \text { contour }]|0\rangle}{\langle 0|[\mathrm{SF} \text { contour }]|0\rangle}
$$

[A.Schafer,AV,in preparation]

- Can be also systematically computed by OPE at small-b

$$
\mathcal{D}(\mu, \mathbf{b})=d\left(a_{s}(\mu), \ln \left(\mu^{2} \mathbf{b}^{2}\right)\right)+\mathbf{b}^{2}(\ldots)+\ldots
$$

Different kind of evolution

$$
\mu^{2} \frac{d \mathcal{D}(\mu, \mathbf{b})}{d \mu^{2}}=\frac{\Gamma_{\mathrm{cusp}}(\mu)}{2}
$$

Matching for \mathcal{D}

Rapidity anomalous dimension can be expressed as vacuum matrix element of known operator

$$
\mathcal{D}(\mu, \mathbf{b})=\frac{i g \frac{\operatorname{Tr}}{N_{c}} \int_{0}^{1} d \beta\langle 0| F^{+\mathbf{b}}\left(-\Lambda_{+} n+\mathbf{b} \beta\right)[\mathrm{SF} \text { contour }]|0\rangle}{\langle 0|[\mathrm{SF} \text { contour }]|0\rangle}
$$

[A.Schafer, AV,in preparation]

- Can be also systematically computed by OPE at small-b

$$
\mathcal{D}(\mu, \mathbf{b})=\underbrace{d\left(a_{s}(\mu), \ln \left(\mu^{2} \mathbf{b}^{2}\right)\right)}_{\text {has correct evol. }}+\mathbf{b}^{2}(\ldots)+\ldots
$$

Different kind of evolution

$$
\mu^{2} \frac{d \mathcal{D}(\mu, \mathbf{b})}{d \mu^{2}}=\frac{\Gamma_{\mathrm{cusp}}(\mu)}{2}
$$

Universităt Regensburg

Matching for \mathcal{D}

Rapidity anomalous dimension can be expressed as vacuum matrix element of known operator

$$
\mathcal{D}(\mu, \mathbf{b})=\frac{i g \frac{\operatorname{Tr}}{N_{c}} \int_{0}^{1} d \beta\langle 0| F^{+\mathbf{b}}\left(-\Lambda_{+} n+\mathbf{b} \beta\right)[\text { SF contour }]|0\rangle}{\langle 0|[\mathrm{SF} \text { contour }]|0\rangle}
$$

[A.Schafer, AV,in preparation]

- Can be also systematically computed by OPE at small-b

$$
\mathcal{D}(\mu, \mathbf{b})=\underbrace{d\left(a_{s}(\mu), \ln \left(\mu^{2} \mathbf{b}_{\mathrm{NP}}^{2}\right)\right)}_{\text {has correct evol. }}+\left\{\mathbf{b}^{2}(\ldots)+\ldots\right\}
$$

Different kind of evolution

- $\mathbf{b}_{\mathrm{NP}}^{2}(b \sim 0) \sim \mathbf{b}^{2}$

$$
-\mathbf{b}_{\mathrm{NP}}^{2}\left(b \gg \Lambda^{-2}\right) \sim \mathrm{const}
$$

$$
\mu^{2} \frac{d \mathcal{D}(\mu, \mathbf{b})}{d \mu^{2}}=\frac{\Gamma_{\mathrm{cusp}}(\mu)}{2}
$$

b_{NP} and $g(\mathbf{b})$ are subjects of fitting

Matching for \mathcal{D}

Rapidity anomalous dimension can be expressed as vacuum matrix element of known operator

$$
\mathcal{D}(\mu, \mathbf{b})=\frac{i g \frac{\operatorname{Tr}}{N_{c}} \int_{0}^{1} d \beta\langle 0| F^{+\mathbf{b}}\left(-\Lambda_{+} n+\mathbf{b} \beta\right)[\mathrm{SF} \text { contour }]|0\rangle}{\langle 0|[\mathrm{SF} \text { contour }]|0\rangle}
$$

[A.Schafer, AV,in preparation]

- Can be also systematically computed by OPE at small-b

$$
\mathcal{D}(\mu, \mathbf{b})=d\left(a_{s}(\mu), \ln \left(\mu^{2} \mathbf{b}_{\mathrm{NP}}^{2}\right)\right)+g\left(\mathbf{b}^{2}, \mathbf{b}_{\mathrm{NP}}^{2}\right)
$$

- $\mathbf{b}_{\mathrm{NP}}^{2}(b \sim 0) \sim \mathbf{b}^{2}$

Different kind of evolution
$\mu^{2} \frac{d \mathcal{D}(\mu, \mathbf{b})}{d \mu^{2}}=\frac{\Gamma_{\text {cusp }}(\mu)}{2}$

- $\mathbf{b}_{\mathrm{NP}}^{2}\left(b \gg \Lambda^{-2}\right) \sim$ const
- $g\left(\mathbf{b}^{2} \sim 0\right) \sim 0$
b_{NP} and $g(\mathbf{b})$ are subjects of fitting

Synopsis of PT \& NP input

$\frac{d \sigma}{d y d Q^{2} d^{2} \mathbf{q}_{T}}=\sigma_{0} \int d^{2} b e^{i\left(\mathbf{b} \cdot \mathbf{q}_{T}\right)} H_{f f^{\prime}}(Q, \mu) R\left[\mathbf{b} ;\left(\mu, Q^{2}\right) \rightarrow \text { s.l. }\right]^{2} F_{f \leftarrow h}\left(x_{1}, b\right) F_{f^{\prime} \leftarrow h}\left(x_{2}, b\right)+\ldots$

- Hard part $H_{f f^{\prime}}(Q, \mu)$
- (perturbative) NNLO
[Matsuura, et al,1989]
- TMD evolution
- Γ-cusp $\mathrm{N}^{3} \mathrm{LO}$
- γ_{V} NNLO
[Gehrmann,et al,1209.06082]
- Rapidity anomalous dimension \mathcal{D} at small-b
- NNLO (resummed!)
- Matching for unpolarized TMDPDF \rightarrow unpolarized PDF
- NNLO

$$
\begin{gathered}
\mathcal{D}=\mathcal{D}_{\mathrm{pert}}\left(\mu, \mathbf{b}^{*}\right)+c_{0} \mathbf{b} \cdot \mathbf{b}^{*}, \quad \mathbf{b}^{*}=\mathbf{b} / \sqrt{1+\mathbf{b}^{2} / B_{\mathrm{NP}}^{2}} \\
f_{N P}(x, \mathbf{b})=\exp \left(-\frac{\left(\lambda_{1}(1-x)+\lambda_{2} x+\lambda_{3} x(1-x)\right) \mathbf{b}^{2}}{\sqrt{1+\lambda_{4} x^{\lambda_{5} \mathbf{b}^{2}}}}\right)
\end{gathered}
$$

Universitãt Regensburg

Practice

Universitãt Regensburg

Synopsis of numeric evaluation

To reach the required data precision one has to include extra numerics:

- Finite bin-size effects
- Fiducial cuts

It make calculation very numerically intensive:

- 3 bin-size integrations
- + Hankel transform
- + 2 NNLO Mellin convolutions
- + ? integrations for evolution
$\sim 10^{6}-10^{7}$ calls of PDF for a single data point

Synopsis of numeric evaluation

Evaluation of DY cross-section by artemide

picture from [artemide manual]

ARTEMIDE

https://teorica.fis.ucm.es/artemide/
Package for TMD phenomenology

- Flexible definition of factorization scheme
- Variety of evolutions (CSS, ζ-prescription, etc.)
- All available PT: LO, NLO, NNLO,resummed
- No restriction for NP models
- Fast code
- Constantly expanding
- (unpol.)DY cross-sections
- (unpol.)SIDIS cross-sections
- Various theory tools.
repository:
https: //github.com/VladimirovAlexey/artemide-public

>	> { TMD factorization \Rightarrow small $-q_{T} / Q$}		
> $\frac{q_{T}}{Q}<0.25$	$\&$	$\left(\frac{q_{T}}{Q}\right)^{2}<\frac{\delta \sigma_{\mathrm{uc}}}{\sigma}$ >	

dedicated study in [I.Scimemi,AV,1706.01473]

$$
x_{1,2}=\frac{Q}{\sqrt{s}} e^{ \pm y} \sqrt{1+\frac{q_{T}^{2}}{Q^{2}}}
$$

Universitāt Regensburg

\[

\]

dedicated study in [I.Scimemi,AV,1706.01473]

$$
x_{1,2}=\frac{Q}{\sqrt{s}} e^{ \pm y} \sqrt{1+\frac{q_{T}^{2}}{Q^{2}}}
$$

High-energy: CDF, D0,
ATLAS, CMS, LHCb 194 points

Low-energy: E288, E605,
E772, PHENIX 263 points

Total: 457 points
$4<Q<150 \mathrm{GeV}$

$$
x>10^{-4}
$$

Results

Universitãt Regensburg

Quality of the fit

$$
\chi^{2} / N_{\mathrm{pt}}=1.17 \quad \Leftarrow \begin{cases}\text { Low energy data: } & 0.90 \\ \text { High energy data: } & 1.55\end{cases}
$$

Systematically lower values!

Quality of the fit

$$
\chi^{2} / N_{\mathrm{pt}}=1.17=1.05+0.12 \Leftarrow \begin{cases}\text { Low energy data: } & 0.90=0.86+0.04 \\ \text { High energy data: } & 1.55=1.30+0.25\end{cases}
$$

Systematically lower values!
nuisance parameters: $\chi^{2}=\underbrace{\chi_{D}^{2}}+\underbrace{\chi_{\lambda}^{2}} \quad \Leftrightarrow \quad d=$ "systematic shift"

Data set	av.sys.	$\chi^{2} / N_{\mathrm{pt}}$	av.shift.	
E288(200)	25%	0.86	41%	
\ldots	\ldots	\ldots	\ldots	
E772	10%	1.70	13%	
ATLAS (8TeV) $\|\mathrm{y}\|<0.4$	2.8%	2.19	3.7%	
ATLAS (8TeV) $0.4<\|\mathrm{y}\|<0.8$	2.8%	3.09	3.7%	The undershooting
ATLAS (8TeV) $0.8<\|\mathrm{y}\|<1.2$	2.8%	1.56	3.8%	
ATLAS (8TeV) $1.2<\|\mathrm{y}\|<1.6$	2.8%	1.73	4.3%	PDFs at large x
ATLAS (8TeV) $1.6<\|\mathrm{y}\|<2.0$	2.8%	1.01	4.9%	
\ldots	\ldots	\ldots	\ldots	
LHCb (7TeV)	1.7%	2.95	5.7%	
LHCb (8TeV)	1.1%	5.54	5.7%	
LHCb (13TeV)	3.9%	0.89	6.3%	

Results

Non-perturbative evolution kernel

Error band by replica method

$$
\begin{aligned}
& B_{\mathrm{NP}}=3.31 \pm 0.28 \\
& c_{0}=0.024 \pm 0.006
\end{aligned}
$$

$$
\begin{aligned}
& B_{\mathrm{NP}}=1.21 \pm 0.50 \\
& c_{0}=0.057 \pm 0.038
\end{aligned}
$$

Universităt Regensburg

Non-perturbative evolution kernel

Results

unpolarized TMD PDF

Full data set --- - No LHC
Error band by replica method

$$
\begin{gathered}
\lambda_{1}=0.26 \pm 0.02 \\
\lambda_{2}=8.18 \pm 1.00 \\
\lambda_{3}=-4.7 \pm 1.37 \\
\lambda_{4}=300 \pm 89.0 \\
\lambda_{3}=2.44 \pm 0.12
\end{gathered}
$$

$$
\begin{gathered}
\lambda_{1}=0.21 \pm 0.17 \\
\lambda_{2}=12.1 \pm 4.40 \\
\lambda_{3}=-3.5 \pm 5.41 \\
\lambda_{4}=316 \pm 196 \\
\lambda_{3}=2.11 \pm 0.28
\end{gathered}
$$

unpolarized TMD PDF

uTMDPDF in b-space

uTMDPDF in k_{T}-space

Universitãt Regensburg

Future studies (conclusion)

Universitãt Regensburg

What I have:

- unpolarized TMD PDF
- non-perturbative TMD evolution (in strict universal definition)
- tuned code for low- q_{T} Drell-Yan process

Two main directions to continue

TMD phenomenology EIC-like

High-energy phenomenology
LHC-like

What I have:

- unpolarized TMD PDF
- non-perturbative TMD evolution (in strict universal definition)
- tuned code for low- q_{T} Drell-Yan process

Two main directions to continue

TMD phenomenology EIC-like

High-energy phenomenology

LHC-like

- SIDIS/TMDFF analysis (on-going)
- Single-spin asymmetries
- etc.

What I have:

- unpolarized TMD PDF
- non-perturbative TMD evolution (in strict universal definition)
- tuned code for low- q_{T} Drell-Yan process

Two main directions to continue

TMD phenomenology

EIC-like

- SIDIS/TMDFF analysis (on-going)
- Single-spin asymmetries
- etc.

High-energy phenomenology

LHC-like

- Jet evolution
[W.Waalewijn, et al,1904.04259]
- Determination of EW parameters (W-mass)
- See next page

In modern high-energy phenomenology there is a standard cut on data: $q_{T}>30 \mathrm{GeV}$
Reason: non-perturbative TMD effects

There are plenty public codes which work at lower q_{T} (non-MC)
q_{T}-resummation

- DYqT
[Bozzi, Catani,Ferrara, et al]

TMD factorization

- artemide
[AV,I.Scimemi]
- DYRes
[Catani, deFlorian,Ferrara, et al]
- NNLOjet
[Glover, Gehrmann-De Ridder, Gehrmann, et al]
- ResBos (-C, -P,-A,-2)
[G.Nadolsky, C.P.Yuan]
- many of them

Remark:

at $q_{T} \gg \Lambda q_{T}$-resummation and TMD-factorization with matching coincide.
(typically) q_{T}-resummation codes introduces only single NP-parameter "non-perturbative Sudakov"
which mimics non-perturbative part of TMD evolution, and effectively cuts the Fourier integral
It allows to go lower in $q_{T}>5-10 \mathrm{GeV}$, for lower values prediction is unstable

Non-perturbative TMD effects

are very important at $q_{T}<5-10 \mathrm{GeV}$ (even at very high energy)

[F.Hautmann, AV,in preparation]
TR
Universităt Regensburg

Inclusion of low- q_{T} data can significantly effect the high-energy physics.

TMD fit is very sensitive to input PDF

- HERAPDF2O $\quad \chi^{2} / N=0.95$
- nNPDF3.1 $\quad \chi^{2} / N=1.17$
- MMHT14 $\quad \chi^{2} / N=1.28$
- PDF4LHC_5 $\quad \chi^{2} / N=1.49$
- ABMP16_5 $\quad \chi^{2} / N=3.07$

Low- q_{T} data could be added to set of data for determination of PDFs

Universităt Regensburg

Inclusion of low- q_{T} data can significantly effect the high-energy physics.

TMD fit is very sensitive to input PDF

- HERAPDF2O $\quad \chi^{2} / N=0.95$
- NNPDF3. $1 \quad \chi^{2} / N=1.17$
- MMHT14 $\quad \chi^{2} / N=1.28$
- PDF4LHC_5 $\quad \chi^{2} / N=1.49$
- ABMP16_5 $\quad \chi^{2} / N=3.07$

Low- q_{T} data could be added to set of data for determination of PDFs

Effect: ~ 40% reduction of uncertainty band
[V.Bertone, A.Glasov,AV,in preparation]

Conclusion:

- unpolarized TMD PDF $\sqrt{ }$
- non-perturbative TMD evolution \checkmark
\checkmark tuned code for low- q_{T} Drell-Yan process

Thank you for attention!

TMD phenomenology

EIC-like

- SIDIS/TMDFF analysis (on-going)
- Single-spin asymmetries
- etc.

High-energy phenomenology

LHC-like

- Jet evolution
- Inclusion of lower- q_{T} data points in HEP/BSM studies
- Determination of EW parameters (W-mass)
- Determination of PDFs, $\alpha_{s}\left(M_{Z}\right)$

