Self－contained and non－perturbative definition of
 Collins－Soper kernel

Alexey Vladimirov

Regensburg University
Regensburg， 2020

Universităt Regensburg

Introduction

Collins-Soper kernel is a part of TMD evolution construct I will show that this is an self-contained and interesting function which

1) can be extracted from the experimental data
2) gives information about $Q C D$ vacuum

Plan of talk

- Review of TMD evolution
- What is known about Collins-Soper kernel
- Self-contained definition
- Applications

Many names - single object

- Collins-Soper kernel; K
- Rapidity anomalous dimension (RAD); $\mathcal{D}, \gamma_{\nu}^{f_{\perp}}$
- Collinear anomaly; $F_{q \bar{q}}$ - ...

$$
\mathcal{D}=-\frac{1}{2} K=\frac{1}{2} F_{q \bar{q}}=-\frac{1}{2} \gamma_{\nu}^{f_{\perp}}
$$

$$
\begin{aligned}
\mu^{2} \frac{d}{d \mu^{2}} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =\frac{\gamma_{F}^{f}(\mu, \zeta)}{2} F_{f \leftarrow h}(x, b ; \mu, \zeta) \\
\zeta \frac{d}{d \zeta} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =-\mathcal{D}^{f}(b, \mu) F_{f \leftarrow h}(x, b ; \mu, \zeta)
\end{aligned}
$$

RAD depends only on the color-representation (quark/gluon) I will assume quark everywhere.

Appearance

- Rapidity logarithms appears in TMD-like factorization is the soft-gluon exchanges between hadrons

collinear	$\sim\left\{1, \lambda^{2}, \lambda\right\}$
anti-collinear	$\sim\left\{\lambda^{2}, 1, \lambda\right\}$
soft	$\sim\left\{\lambda^{2}, \lambda^{2}, \lambda\right\}$

$$
d \sigma \sim \int d b e^{-i(b q)} H\left(Q / \mu_{H}\right) \tilde{F}_{1}\left(x_{1}, b ; \mu_{H}\right) S^{-1}\left(b ; \mu_{H}\right) \tilde{F}_{2}\left(x_{2}, b ; \mu_{H}\right) H^{\dagger}\left(Q / \mu_{H}\right)
$$

- Soft modes overlap with collinear modes and must be subtracted (to avoid double-counting)
- F_{1}, F_{2} and S have rapidity divergences

Rapidity divergences appears in the long-range ineraction with the "far end" of light-like Wilson line

- (In conformal field theory) rapidity divergences are equivalent to ultraviolet divergences

- Rapidity divergences are multiplicatively renormalizable [AV,1707.07606]

$$
\begin{equation*}
S(\mu, b)=\tilde{R}^{\dagger}\left(\mu, \nu_{+}\right) S_{0}\left(\mu, b ; \nu^{2}\right) \tilde{R}\left(\mu, \nu_{-}\right)=R^{\dagger}\left(\mu, \nu_{-}, \nu^{2}\right) R\left(\mu, \nu_{+}, \nu^{2}\right) \tag{1}
\end{equation*}
$$

- The renormalization scheme is defined by $S_{0}=1$
- This finalizes the factorization theorem

$$
\begin{aligned}
\tilde{F}_{1}\left(x_{1}, b ; \mu\right) S^{-1}(b ; \mu) \tilde{F}_{2}\left(x_{2}, b ; \mu\right) & =\tilde{F}_{1}\left(x_{1}, b ; \mu\right) R^{-1}\left(\mu, \nu_{-}, \nu^{2}\right) R^{-1}\left(\mu, \nu_{+}, \nu^{2}\right) \tilde{F}_{2}\left(x_{2}, b ; \mu\right) \\
& =F_{1}\left(x_{1}, b ; \mu, \zeta_{1}\right) F_{2}\left(x_{2}, b ; \mu, \zeta_{2}\right) \\
\zeta_{1}=2\left(p^{+}\right)^{2} \frac{\nu^{-}}{\nu^{+}}, \quad \zeta_{2} & =2\left(p^{-}\right)^{2} \frac{\nu^{+}}{\nu^{-}}, \quad \zeta_{1} \zeta_{2}=\left(2 p^{+} p^{-}\right)^{2} \simeq Q^{4}
\end{aligned}
$$

Rapidity anomalous dimension

$$
\mathcal{D}(b, \mu)=\frac{1}{2} R^{-1}(b, \mu ; \nu) \frac{d}{d \ln \nu} R(b, \mu ; \nu)
$$

Renormalization equation for CS kernel

- Rapidity logarithms \times ordinary logarithms \Rightarrow double logarithms

$$
\begin{equation*}
\frac{d}{d \ln \mu} \mathcal{D}(b, \mu)=\Gamma_{c u s p}(\mu) \tag{2}
\end{equation*}
$$

- RAD has non-trivial structure in $\ln (\mu b)$
- And non-trivial counting rules (typically order cusp $>\operatorname{order}_{\mathcal{D}}$)
- E.g. LO

$$
\mathcal{D}=-\frac{\Gamma_{0}}{2 \beta_{0}} \ln \left(1-\beta_{0} a_{s}(\mu) \ln \left(\frac{\mu^{2} \mathbf{b}^{2}}{4 e^{-2 \gamma}}\right)\right)+a_{s} \ldots
$$

Rapidity anomalous dimension in perturbation theory

- 2-loop
- 3-loop
- SAD/RAD correspondence
- 4-loop(?)
[Echevarria,et al,1511.05590][many others]
[Li,Zhu,1604.01404]
[AV,1511.05590]
[Zhu,et al, SCET 2020]

$$
\gamma_{s}\left(\mu, v_{i j}\right)=2 \mathcal{D}\left(\mu, b^{2}(v) ; \epsilon^{*}\right)
$$

Universităt Regensburg

Rapidity anomalous dimension is not an ordinary anomalous dimension

- RAD is non-perturbative function at large- b
- IR Renormalons at $n=1,2,3 \ldots$
[Korchemsky,Tafat,2001;Scimemi,AV;2016]

$$
\begin{equation*}
\mathcal{D}(b, \mu)=\mathcal{D}_{\text {pert }}(\mu, b)+b^{2} g_{K}+b^{4} \ldots \tag{3}
\end{equation*}
$$

Rapidity anomalous dimension must be determined from the data

Universitãt Regensburg

Extraction of rapidity anomalous dimension is not trivial

$$
\begin{aligned}
\mu^{2} \frac{d}{d \mu^{2}} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =\frac{\gamma_{F}^{f}(\mu, \zeta)}{2} F_{f \leftarrow h}(x, b ; \mu, \zeta) \\
\zeta \frac{d}{d \zeta} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =-\mathcal{D}^{f}(b, \mu) F_{f \leftarrow h}(x, b ; \mu, \zeta)
\end{aligned}
$$

The non-perturbative TMD distribution is a function non-perturbative RAD

$$
F(x, b ; \mu, \zeta ;[\mathcal{D}(\mu, b)])
$$

Any variation in μ or ζ mixes TMD and \mathcal{D} Especially horrible in CSS approach, where

$$
\mu \rightarrow \mu(b)
$$

RAD cannot be imagined without corresponding TMDs?
Breakdown of universality?

Extraction of rapidity anomalous dimension is not trivial

$$
\begin{aligned}
\mu^{2} \frac{d}{d \mu^{2}} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =\frac{\gamma_{F}^{f}(\mu, \zeta)}{2} F_{f \leftarrow h}(x, b ; \mu, \zeta) \\
\zeta \frac{d}{d \zeta} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =-\mathcal{D}^{f}(b, \mu) F_{f \leftarrow h}(x, b ; \mu, \zeta)
\end{aligned}
$$

Answer:

TMD evolution is 2 D evolution and equi-evolutional curves corresponds to non-mixing change of scales.
The saddle-point and special equi-evolution curves corresponds to

$$
F(x, b ; \mu, \zeta ;[\mathcal{D}(b)=0])
$$

Universitãt Regensburg

The picture of evolution plane is different for different b and different model of RAD

It must be accounted in the solution [Scimemi,AV;1912.06532]

$$
\begin{equation*}
F(x, b ; \mu, \zeta)=\left(\frac{\zeta}{\zeta_{\mu}[\mathcal{D}]}\right)^{-\mathcal{D}(\mu, b)} F(x, b) \tag{4}
\end{equation*}
$$

$$
\zeta_{\mu}[\mathcal{D}(b)]=\mu^{2} e^{-\frac{g}{a_{s}(\mu) \mathcal{D}}}, \quad g=\frac{\Gamma_{0}}{2 \beta_{0}^{2}}\left(e^{-\mathcal{D}}+\mathcal{D}-1\right)+a_{s}(\ldots)+\ldots
$$

This "exact" solution does not specify RAD.
It can be any function and the solution is valid at any b !

TMD factorization in ζ-prescription

$$
\begin{gathered}
\begin{array}{|c}
\frac{d \sigma}{d x d z d Q^{2} d^{2} \mathbf{q}_{T}}=\sum_{f f^{\prime}} H_{f f^{\prime}}\left(\frac{Q}{\mu}\right) \int d^{2} b e^{i\left(\mathbf{b} \cdot \mathbf{q}_{T}\right)} F_{f \leftarrow p}\left(x_{1}, b, \mu, \zeta\right) F_{f^{\prime} \leftarrow \pi}\left(x_{2}, b, \mu, \zeta\right) \\
\text { TMD evolution (optimal solution) } \\
\text { " } \zeta \text {-prescription" }
\end{array} \\
\frac{d \sigma}{d x d z d Q^{2} d^{2} \mathbf{q}_{T}}=\sum_{f f^{\prime}} H_{f f^{\prime}}\left(\frac{Q}{\mu}\right) \int d^{2} b e^{i\left(\mathbf{b} \cdot \mathbf{q}_{T}\right)}\left(\frac{Q^{2}}{\zeta_{\mu}[\mathcal{D}]}\right)^{-2 \mathcal{D}(b, \mu)} F_{f \leftarrow p}\left(x_{1}, b\right) F_{f^{\prime} \leftarrow \pi}\left(x_{2}, b\right)
\end{gathered}
$$

- $\mu \sim Q$ everywhere
- Simple and fast expression for TMD evolution factor (just an algebraic function)
- Simpler expression for perturbative matching for TMDs

Universitãt Regensburg

Universal TMD evolution kernel

$$
\mathcal{D}_{\mathrm{NP}}(b, \mu)=\mathcal{D}_{\operatorname{perp}}\left(b^{*}, \mu\right)+c_{0} b b^{*}, \quad b_{\mathrm{NP}}\left(b_{T}, \mu=4 \mathrm{GeV}\right)
$$

- Extracted from joined fit of DY + SIDIS $(2<Q<150 \mathrm{GeV})$
- Mild correlation with TMDs
- Stable with respect to collinear input

Universal TMD evolution kernel

Comparison

Universitãt Regensburg

Intermediate conclusion

- RAD is an independent non-perturbative function
- RAD is independent on hadron!
- RAD is universal DY, SIDIS, jets, DPDs,...
- Small-b limit of RAD is perfectly fixed ($\mathrm{N}^{3} \mathrm{LO}$!)
- The large-b is almost unknown

Universitãt Regensburg

Many questions!

- If RAD is "an independent non-perturbative function" how to define in quantum field theory?
- Are there ways to compute the large-b for RAD?
- What it measures?

Despite RAD is known for $\sim 30-40$ years, there is no dedicated theoretical discussion in literature about these questions

Only a few papers which touch these questions
[Tafat,010227],[Schweitzer,Strikman,Weiss,1210.1267],[Becher,Bell,1312.5327],
[Collins,Rogers,1412.3820],[Scimemi,AV ,1609.06047]
[AV,2003.02288]

Universitãt Regensburg

Defining rapidity anomalous dimension

- RAD appears in TMD soft factor

$$
S(b, \mu)=\frac{\operatorname{Tr}}{N_{c}}\langle 0| W_{C}|0\rangle Z_{S}^{2}(\mu)
$$

- In some proper regularization of rap.div. $(\varrho \rightarrow 0)$

$$
S(b, \mu)=\exp (2 \mathcal{D}(b, \mu) \ln \varrho+B(b, \mu)+\ldots)
$$

Suitable regulator

- Defined on the operator level
- Preserve gauge invariance
- Do not introduce extra divergences (nor mix with other divergences)

All "convenient" regulators fail...
It can be done by geometric deformation of WL's

$$
\varrho=\left(\Lambda_{+} \Lambda_{-}\right)^{-1}
$$

Universitãt Regensburg

Only one Λ is needed

$$
\begin{gathered}
S(b, \mu)=\frac{\operatorname{Tr}}{N_{c}}\langle 0| W_{C^{\prime}}\left(\Lambda_{+} \lambda_{-}\right)|0\rangle Z_{S}^{2}(\mu)=\exp \left(-2 \mathcal{D}(b, \mu) \ln \left(\Lambda_{+} \lambda-\right)+B(\mu, b)+O\left(\frac{1}{\Lambda_{+} \lambda-}\right)\right) \\
\mathcal{D}(b, \mu)=\frac{1}{2} \lim _{+} \frac{d \ln S_{C^{\prime}}(b, \mu)}{d \ln \lambda_{-}}
\end{gathered}
$$

$$
\mathcal{D}(b, \mu)=\lambda_{-} \frac{i g}{2} \frac{\operatorname{Tr} \int_{0}^{1} d \beta\langle 0| F_{b+}\left(-\lambda_{-} n+b \beta\right) W_{C^{\prime}}|0\rangle}{\operatorname{Tr}\langle 0| W_{C^{\prime}}|0\rangle}+Z_{\mathcal{D}}(\mu)
$$

- λ_{-}independent!
- Additive renormalization $\frac{d Z_{\mathcal{D}}}{d \ln \mu}=\Gamma_{c u s p}(\mu)$

Universităt Regensburg

Perturbation

$$
\text { LO-diagram }=-4 g^{2} C_{F} \frac{\Gamma(2-\epsilon)}{4 \pi^{d / 2}} \lambda_{-} \int_{0}^{1} d \beta \int_{-\infty}^{0} d \alpha \frac{b^{2} \beta}{\left[-2 \alpha \lambda_{-}-\beta^{2} b^{2}+i 0\right]^{2-\epsilon}}
$$

- Exactly coincides with ordinary computation (as function of ϵ)
- Renormalization is indeed additive
- Structure of integrals here and in SF is different
- Some two-loop checks (cancellation of rap.divs.) also passes

Universitãt Regensburg

Perturbation

$$
\text { LO-diagram }=-4 g^{2} C_{F} \frac{\Gamma(2-\epsilon)}{4 \pi^{d / 2}} \lambda_{-} \int_{0}^{1} d \beta \int_{-\infty}^{0} d \alpha \frac{b^{2} \beta}{\left[-2 \alpha \lambda_{-}-\beta^{2} b^{2}+i 0\right]^{2-\epsilon}}
$$

$$
\mathcal{D}_{\mathrm{LO}}=-2 C_{F} a_{s}\left[\Gamma(-\epsilon)\left(\frac{\mathbf{b}^{2} \mu^{2}}{4 e^{-\gamma_{E}}}\right)^{\epsilon}+\frac{1}{\epsilon}\right]
$$

- Exactly coincides with ordinary computation (as function of ϵ)
- Renormalization is indeed additive
- Structure of integrals here and in SF is different
- Some two-loop checks (cancellation of rap.divs.) also passes

Universitãt Regensburg

Small-b expansion

$$
\mathcal{D}(b, \mu)=\mathcal{D}_{0}(b, \mu)+b^{2} \mathcal{D}_{2}(b)+b^{4} \mathcal{D}_{4}(b)+\ldots
$$

- \mathcal{D}_{0} starts from 1-loop, known up to 3-loop
$-\mathcal{D}_{2,4}, .$. starts from tree-orders, unknown
Using new definition they are straightforward to compute
- Tree order power corrections expresses via correlators of the type

$$
\langle 0| F_{\mu_{1} x_{1}}\left(x_{1}\right)\left[x_{1}, 0\right] F_{\mu_{2} x_{2}}\left(x_{2}\right)\left[x_{2}, 0\right] \ldots F_{\mu_{n} x_{n}}\left(x_{n}\right)\left[x_{n}, 0\right]|0\rangle
$$

Universitãt Regensburg

$$
\begin{gathered}
b^{2} \text {-terms } \\
\mathcal{D}_{2}(b)=\frac{1}{2} \int_{0}^{\infty} d \mathbf{r}^{2} \frac{\varphi_{1}\left(\mathbf{r}^{2}, 0,0\right)}{\mathbf{r}^{2}}+O\left(\alpha_{s}\right)
\end{gathered}
$$

$$
\begin{align*}
& \Phi_{\mu \nu}(x, y)=g^{2}\langle 0| F_{\mu x}(x)[x, 0][0, y] F_{\nu y}(y)|0\rangle \\
& \Phi_{\mu \nu}(x, y)=\left(g_{\mu \nu}-\frac{y_{\mu} x_{\nu}}{(x y)}\right) \varphi_{1}\left(r^{2}, x^{2}, y^{2}\right) \tag{16}\\
& \quad+\frac{\left(x_{\mu}(x y)-y_{\mu} x^{2}\right)\left(y_{\nu}(x y)-x_{\nu} y^{2}\right)}{(x y)\left((x y)^{2}-x^{2} y^{2}\right)} \varphi_{2}\left(r^{2}, x^{2}, y^{2}\right)
\end{align*}
$$

where $r^{2}=(x-y)^{2}$. At $x^{2}=y^{2}=0, \varphi_{2}$ vanishes

- First(and only) model-independent expression for power correction to CS kernel
- I have also checked it by direct computation of TMD SF in the back-ground (and extraction of rapidity divergence in δ-regulator)

Universitãt Regensburg

$$
\begin{aligned}
\mathcal{D}_{2}(b)= & \frac{1}{2} \int_{0}^{\infty} d \mathbf{r}^{2} \frac{\varphi_{1}\left(\mathbf{r}^{2}, 0,0\right)}{\mathbf{r}^{2}}+O\left(\alpha_{s}\right) \\
& \lim _{\mathbf{r}^{2} \rightarrow 0} \frac{\varphi_{1}\left(\mathbf{r}^{2}, 0,0\right)}{\mathbf{r}^{2}}=\frac{\pi^{2}}{36} G_{2}
\end{aligned}
$$

Assuming that φ_{1} has some effective radius $\sim \Lambda_{Q C D}^{-1}$

$$
\begin{equation*}
\mathcal{D}_{2} \sim \frac{\pi^{2}}{72} \frac{G_{2}}{\Lambda_{Q C D}^{2}} \simeq(1 .-5 .) \times 10^{-2} \mathrm{GeV}^{-2} \tag{6}
\end{equation*}
$$

	Pavia17	SV19	SV17	Pavia19	BLNY (03/14)
$\mathcal{D}_{2} \times 10^{2}$	2.8 ± 0.5	2.9 ± 0.6	$0.7_{-0.7}^{+1.2}$	0.9 ± 0.2	$20-35$

The power correction is a notably small number.

Interpretation can be made with model

Stochastic vacuum model

- Simplistic model of QCD vacuum
- Build-in confinement (area law)
- Central assumption: at large-distances Wilson lines can be ignored
- Secondary assumption: Multi-point correlators can be reduced to product of two-point correlators
- [Dosch,Shevchenko,Simonov,hep-ph-0212159]

$$
\Delta_{\mu_{1} \nu_{1} ; \mu_{2} \nu_{2}}\left(x_{1}, x_{2} ; x_{0}\right)=g^{2} \frac{\operatorname{Tr}}{N_{c}}\langle 0| F_{\mu_{1} \nu_{1}}\left(x_{1}\right)\left[x_{1}, x_{0}\right]\left[x_{0}, x_{2}\right] F_{\mu_{2} \nu_{2}}\left(x_{2}\right)|0\rangle .
$$

$$
\begin{align*}
\Delta_{\mu \nu ; \lambda \rho}\left(u, v ; x_{0}\right)= & \beta\left\{\left(g_{\mu \lambda} g_{\nu \rho}-g_{\mu \rho} g_{\nu \lambda}\right) \Delta\left((u-v)^{2}\right)\right. \tag{7,91}\\
& \left.+\frac{1}{2}\left[\frac{\partial}{\partial u_{\mu}}\left((u-v)_{\lambda} g_{\nu \rho}-(u-v)_{\rho} g_{\nu \lambda}\right)+\frac{\partial}{\partial u_{\nu}}\left((u-v)_{\rho} g_{\mu \lambda}-(u-v)_{\lambda} g_{\mu \rho}\right)\right] \Delta_{1}\left((u-v)^{2}\right)\right\} \\
= & \beta\left\{\left(g_{\mu \lambda} g_{\nu \rho}-g_{\mu \rho} g_{\nu \lambda}\right)\left(\Delta\left(z^{2}\right)+\Delta_{1}\left(z^{2}\right)\right)\right. \\
& \left.+\left[g_{\mu \lambda} z_{\nu} z_{\rho}-g_{\nu \lambda} z_{\mu} z_{\rho}-g_{\mu \rho} z_{\nu} z_{\lambda}+g_{\nu \rho} z_{\mu} z_{\lambda}\right] \frac{\partial \Delta_{1}\left(z^{2}\right)}{\partial z^{2}}\right\},
\end{align*}
$$

Universitãt Regensburg

Computation of RAD in SVM

- Step 1: Apply Non-Abelian Stockes theorem
- Step 2: Rewrite all multi-point correlators $\langle F . . F\rangle$ by products of $\langle F F\rangle^{n}$ (effectively replace non-Abelian Stockes theorem by Abelian one)
- Step 3: Make some change of variables and integration by parts

$$
\mathcal{D}=\int_{0}^{\boldsymbol{b}^{2}} d \boldsymbol{y}^{2}\left(\frac{\sqrt{\boldsymbol{b}^{2}}}{\sqrt{\boldsymbol{y}^{2}}}-1\right)\left\{-\boldsymbol{y}^{2} \Delta_{1}\left(\boldsymbol{y}^{2}\right)+\int_{0}^{\infty} d \boldsymbol{r}^{2}\left(\Delta\left(\boldsymbol{r}^{2}+\boldsymbol{y}^{2}\right)+\frac{\Delta_{1}\left(\boldsymbol{r}^{2}+\boldsymbol{y}^{2}\right)}{2}\right)\right\} .
$$

Universitãt Regensburg

Asymptotic behavior of RAD

- At large-b linear asymptotic

$$
\lim _{\mathbf{b}^{2} \rightarrow \infty} \mathcal{D}(b)=\sqrt{\mathbf{b}^{2}} \underbrace{\int_{0}^{\infty} d \mathbf{y}^{2} 2 \sqrt{y^{2}} \Delta\left(\mathbf{y}^{2}\right)}_{c_{\infty}}
$$

- Lattice computations [Bali,Brambilla,Vairo,97; Meggiolaro,98]

$$
c_{\infty} \simeq 0.01-0.4 \mathrm{GeV} \quad \text { compare to } \quad c_{\infty}^{\mathrm{SV} 19} \simeq 0.06 \pm 0.01 \mathrm{GeV}
$$

Universitãt Regensburg

$$
\mathcal{D}=\int_{0}^{\boldsymbol{b}^{2}} d \boldsymbol{y}^{2}\left(\frac{\sqrt{\boldsymbol{b}^{2}}}{\sqrt{\boldsymbol{y}^{2}}}-1\right)\left\{-\boldsymbol{y}^{2} \Delta_{1}\left(\boldsymbol{y}^{2}\right)+\int_{0}^{\infty} d \boldsymbol{r}^{2}\left(\Delta\left(\boldsymbol{r}^{2}+\boldsymbol{y}^{2}\right)+\frac{\Delta_{1}\left(\boldsymbol{r}^{2}+\boldsymbol{y}^{2}\right)}{2}\right)\right\}
$$

Common assumption $\Delta \gg \Delta_{1}$

$$
\Delta(\mathbf{b})=\frac{-1}{4 b} \frac{\partial^{3} \mathcal{D}(\mathbf{b})}{\partial \mathbf{b}^{3}}, \quad \mathbf{b}=\sqrt{\mathbf{b}^{2}}
$$

In this model, RAD is directly related to the non-perturbative gluon propagator

Interesting note: to solve the equation I must assume that (similar conclusion made in [Collins,Rogers,1412.3820])

$$
\begin{equation*}
\lim _{\mathbf{b} \rightarrow \infty} \mathcal{D}(\mathbf{b}) \sim\left(\mathbf{b}^{2}\right)^{1 / 2-\delta}, \quad \delta \geqslant 0 \tag{7}
\end{equation*}
$$

Universitãt Regensburg

Relation to the static potential

In SVM the potential between two quark sources (confining potential) is [Brambilla,Vairo,hep-ph/9606344]
$V(\boldsymbol{b})=2 \int_{0}^{\boldsymbol{b}} d \boldsymbol{y}(\boldsymbol{b}-\boldsymbol{y}) \int_{0}^{\infty} d \boldsymbol{r} \Delta\left(\sqrt{\boldsymbol{r}^{2}+\boldsymbol{y}^{2}}\right)+\int_{0}^{\boldsymbol{b}} d \boldsymbol{y} \boldsymbol{y} \int_{0}^{\infty} d \boldsymbol{r} \Delta_{1}\left(\sqrt{\boldsymbol{r}^{2}+\boldsymbol{y}^{2}}\right)$.

$V(r, \mu=4 . \mathrm{GeV})$

$$
V(r)=r \frac{\pi}{4} \mathcal{D}^{\prime \prime}(0)+\frac{\mathcal{D}^{\prime}(0)}{2}+\frac{r^{2}}{2} \int_{r}^{\infty} \frac{d x}{x^{2}} \frac{\mathcal{D}^{\prime}(x)}{\sqrt{x^{2}-r^{2}}}+\ldots
$$

Conclusion

Collins-Soper kernel is the way to study QCD vacuum with collider experiments

Self-contained definition of Collins-Soper kernel

- Definition without reference to any process/distribution
- A way to power-corrections, non-perturbative modeling and interpretation
- A peculiar quantum-field-theoretical construction: anomalous dimension as a matrix element
- Casimir scaling at power-correction level

Many thoughts...

- Iterative structure
- Soft/rapidity anomalous dimension correspondence

Universitãt Regensburg

