Generating function of web－diagrams： theory and applications

Alexey Vladimirov

Regensburg University
Torino， 2020

Universităt Regensburg

Introduction

Disclaimer: the work which I am going to present has been done in 2015, since that time I was (mainly) involved in unrelated topics.

I could forget some details...

Plan of talk

- Generating function for web-diagrams
- Iterative substructure
- Examples of application

Literature

- [1406.6253] (Phys.Rev.D 90 (2014)) initial concept
- [1501.03316] (JHEP 06 (2015) 120) Main article
- [1608.04920] (JHEP 12 (2016) 038) Non-trivial example, 2loop multi-scattering SF
- [1707.07606] (JHEP 04 (2018) 045) Non-trivial example, 3loop decomposition + vertex reduction (see appendix)

Wilson lines

The method is valid for arbitrary-path Wilson lines for arbitrary gauge group

- Wilson line on arbitrary path

$$
\begin{equation*}
\mathbf{\Phi}_{\gamma}=P \exp \left(i g \int_{0}^{1} d \tau \dot{\gamma}^{\mu}(\tau) A_{\mu}^{A}(\gamma(\tau)) \mathbf{T}^{A}\right) \tag{1}
\end{equation*}
$$

$-\mathbf{T}^{A}$ is the generator of gauge group. Bold font denotes matrices in the group space.

Universitãt Regensburg

Exponentiation and web-diagrams

- Original concept [Sterman,1981; Gatheral,1983; Frenkel \& Taylor,1984]
- The vacuum expectation of a Wilson loop can be presented as

$$
\begin{aligned}
\left\langle\operatorname{tr}\left(\mathbf{\Phi}_{\gamma}\right)\right\rangle & =\sum_{d \in \text { diag. }} C(d) \mathcal{F}(d)=\exp \left(\sum_{d \in \text { diag. }} \tilde{C}(d) \mathcal{F}(d)\right) \\
\text { Color factor } & \begin{array}{c}
\text { Loop } \\
\text { integral }
\end{array}
\end{aligned}
$$

Exponentiation and web-diagrams

- Original concept [Sterman,1981; Gatheral,1983; Frenkel \& Taylor,1984]
- The vacuum expectation of a Wilson loop can be presented as

$$
\begin{array}{r}
\left\langle\operatorname{tr}\left(\mathbf{\Phi}_{\gamma}\right)\right\rangle=\sum_{d \in \text { diag. }} C(d) \mathcal{F}(d)=\exp \left(\sum_{d \in \text { diag. }} \tilde{C}(d) \mathcal{F}(d)\right) \\
\text { Color factor } \quad \begin{array}{c}
\text { Loop } \\
\text { integral }
\end{array} \quad \begin{array}{c}
\text { Modified } \\
\text { color factor }
\end{array}
\end{array}
$$

$$
\tilde{C}(d)=C(d)-\sum_{d^{\prime}} \prod_{w \in d^{\prime}} \tilde{C}(w)
$$

where w is two-Wilson line irreducible graph, also known as a web-diagram.

- The derivation is based on the observation that completely symmetric part of Wilson-line vertex is reducible

$$
\begin{aligned}
\int_{0}^{1} d \tau_{1} & \int_{0}^{\tau_{1}} d \tau_{2} \int_{0}^{\tau_{2}} d \tau_{3} A_{\gamma}^{A}\left(\tau_{1}\right) A_{\gamma}^{B}\left(\tau_{2}\right) A_{\gamma}^{B}\left(\tau_{3}\right) \mathbf{T}^{A} \mathbf{T}^{B} \mathbf{T}^{C} \\
& \int_{0}^{1} d \tau_{1} \int_{0}^{1} d \tau_{2} \int_{0}^{1} d \tau_{3} A_{\gamma}^{A}\left(\tau_{1}\right) A_{\gamma}^{B}\left(\tau_{2}\right) A_{\gamma}^{B}\left(\tau_{3}\right)\left\{\mathbf{T}^{A} \mathbf{T}^{B} \mathbf{T}^{C}\right\}+\text { anti-sym.perm. }
\end{aligned}
$$

- + cyclic property of the trace, exponentiation selects maximum non-Abelian part.

Extension for arbitrary configuration

- [Mitov,Sterman,Sung,2010] General analysis \Rightarrow no-simple solution
- [Gardi,Laenen,White,et al,2010-2014] Replica method \Rightarrow algorithmic method
- [AV,2015] Generating function \longrightarrow

The core of any diagrammatic exponentiation is the expression for connected part of Feynman diagrams

- Partition function

$$
Z[J]=\int D A e^{S[A]+J O}
$$

where O is an operator and J is a source

- The resulting expression is exponent of only connected diagrams

$$
\frac{Z[J]}{Z[0]}=e^{W[J]}
$$

- If the operator has a form of exponent

$$
O[A]=\exp \left(\int d x M(x) o[A]\right)
$$

its vacuum expectation value is exponent of only connected diagrams with operators o

$$
\langle O[A]\rangle=Z^{-1}[0] \int D A e^{S[A]+\int M o[A]}=e^{W[M]}
$$

where M is "classical source" for operators o.

- W is the generating function for Feynman diagrams

$$
\begin{align*}
W[M]= & \int d x M(x)\langle o(x)\rangle_{c}+\frac{1}{2} \int d x_{1} d x_{2} M\left(x_{1}\right) M\left(x_{2}\right)\left\langle o\left(x_{1}\right) o\left(x_{2}\right)\right\rangle_{c} \tag{2}\\
& +\frac{1}{3!} \int d x_{1} d x_{2} d x_{3} M\left(x_{1}\right) M\left(x_{2}\right) M\left(x_{3}\right)\left\langle o\left(x_{1}\right) o\left(x_{2}\right) o\left(x_{3}\right)\right\rangle_{c}+\ldots
\end{align*}
$$

Abelian exponentiation

- Abelian Wilson line is an exponent

$$
\begin{equation*}
\Phi_{Q E D}=P \exp \left(i e \int_{0}^{1} d \tau A_{\gamma}(\tau)\right)=\exp \left(i e \int_{0}^{1} d \tau A_{\gamma}(\tau)\right) \tag{3}
\end{equation*}
$$

- Operator is $\int_{0}^{1} d \tau A_{\gamma}(\tau)$
- The source is $i e$.

- Magnus expansion

$$
\begin{equation*}
\mathbf{\Phi}_{\gamma}=P \exp \left(i g \int d \tau A_{\gamma}^{A}(\tau) \mathbf{T}^{A}\right)=\exp \left(\mathbf{T}^{A} \sum_{n=1}^{\infty} V_{n}^{A}\right) \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
V_{1}^{A} & =i g \int_{0}^{1} d \tau_{0} \operatorname{tr}\left(\mathbf{T}^{A} \mathbf{A}_{0}\right) \\
V_{2}^{A} & =-(i g)^{2} \int_{0}^{1} d \tau_{0} \int_{0}^{\tau_{0}} d \tau_{1} \operatorname{tr}\left(\mathbf{T}^{A}\left[\mathbf{A}_{0}, \mathbf{A}_{1}\right]\right) \\
V_{3}^{A} & =\frac{(i g)^{3}}{3} \int_{0}^{1} d \tau_{0} \int_{0}^{\tau_{0}} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \operatorname{tr}\left(\mathbf{T}^{A}\left\{\left[\left[\mathbf{A}_{0}, \mathbf{A}_{1}\right], \mathbf{A}_{2}\right]-\left[\left[\mathbf{A}_{0}, \mathbf{A}_{2}\right], \mathbf{A}_{1}\right]\right\}\right) \\
V_{4}^{A} & =\frac{(i g)^{4}}{6} \int_{0}^{1} d \tau_{0} \int_{0}^{\tau_{0}} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \int_{0}^{\tau_{2}} d \tau_{4} \times
\end{aligned}
$$

$$
\operatorname{tr}\left(\mathbf { T } ^ { A } \left\{\left[\left[\left[\mathbf{A}_{1}, \mathbf{A}_{2}\right], \mathbf{A}_{3}\right], \mathbf{A}_{0}\right]-\left[\left[\left[\mathbf{A}_{0}, \mathbf{A}_{1}\right], \mathbf{A}_{2}\right], \mathbf{A}_{3}\right]+\left[\left[\left[\mathbf{A}_{0}, \mathbf{A}_{3}\right], \mathbf{A}_{2}\right], \mathbf{A}_{1}\right]-\left[\left[\left[\mathbf{A}_{2}, \mathbf{A}_{3}\right],\right.\right.\right.\right.
$$

- Magnus expansion

$$
\begin{equation*}
\mathbf{\Phi}_{\gamma}=P \exp \left(i g \int d \tau A_{\gamma}^{A}(\tau) \mathbf{T}^{A}\right)=\exp \left(\mathbf{T}^{A} \sum_{n=1}^{\infty} V_{n}^{A}\right) \tag{4}
\end{equation*}
$$

Some properties of V

- Symmetric with respect to permutation of "legs"
- (mostly)Anti-Symmetric with respect to permutation of momenta or color
- Has lower degree of IR divergence due to cancellation of "surface divergence"

$$
V_{2} \rightarrow \frac{1}{k_{1}\left(k_{1}+k_{2}\right)}-\frac{1}{k_{2}\left(k_{1}+k_{2}\right)}=\frac{k_{2}-k_{1}}{k_{1} k_{2}\left(k_{1}+k_{2}\right)}
$$

Universitãt Regensburg

Generating function for web-diagrams

$$
\mathbf{W}=\sum_{n=1}^{\infty} \mathbf{W}_{n}, \quad \mathbf{W}_{n}=\mathbf{T}^{A_{1}} \ldots \mathbf{T}^{A_{n}}\left\langle V^{A_{1}} \ldots V^{A_{n}}\right\rangle_{c}
$$

- Note 1: \mathbf{W} is completely symmetric in $A_{1} \ldots A_{n}$
- Note 2: Only connected diagrams (but non-necessary Wilson-line-irreducible)
- Note 3: Color coefficients are maximally non-Abelian
- Note 4: Actually, W has smaller set of diagrams then ordinary "webs"

$$
\mathbf{\Phi}_{\gamma}=\exp \left(\mathbf{T}^{A} \sum_{n=1}^{\infty} V_{n}^{A}\right)
$$

- \mathbf{T} is source, and V 's are operators!

$$
\left\langle\mathbf{\Phi}_{\gamma}\right\rangle=Z^{-1}[0] \int D A e^{i S+\mathbf{T}^{A} V_{A}}=\mathbf{Z}[\mathbf{T}]
$$

There is exponentiation

$$
\mathbf{Z}[T]=e^{\mathbf{W}[\mathbf{T}]}
$$

$$
\mathbf{\Phi}_{\gamma}=\exp \left(\mathbf{T}^{A} \sum_{n=1}^{\infty} V_{n}^{A}\right)
$$

- \mathbf{T} is source, and V 's are operators!

$$
\left\langle\mathbf{\Phi}_{\gamma}\right\rangle=Z^{-1}[0] \int D A e^{i S+\mathbf{T}^{A} V_{A}}=\mathbf{Z}[\mathbf{T}]
$$

A problem:

There is no matrix exponentiation

Universitãt Regensburg

"Colorless" Wilson line.

- Let me screw out the matrix component of the Wilson line

- In this way the problem of color algebra is separated from the problem of loop-diagram computation

Universitãt Regensburg

"Colorless" Wilson line.

- Let me screw out the matrix component of the Wilson line

- In this way the problem of color algebra is separated from the problem of loop-diagram computation

Final form

$$
\begin{aligned}
&\left\langle\mathbf{\Phi}_{\gamma}\right\rangle=\left.e^{\mathbf{T}^{\mathbf{A}} \frac{\delta}{\delta \theta^{A}}} e^{W[\theta]}\right|_{\theta=0}=e^{\mathbf{W}[\mathbf{T}]+\delta \mathbf{W}} \\
& \begin{array}{c}
\text { Generating } \\
\text { function for webs }
\end{array} \begin{array}{c}
\text { Defect of } \\
\text { exponentiation }
\end{array}
\end{aligned}
$$

- The defect is the penalty terms for matrix exponentiation
- The defect is algebraic function of W (all order expression (4.30) in [1501.0331])
- Note : W and δW are independently gauge-invariant

$$
\begin{gathered}
\delta \mathbf{W}=\sum_{n=2}^{\infty} \delta_{\mathbf{n}} \mathbf{W}, \quad \delta_{\mathbf{n}} \mathbf{W} \sim \mathbf{W}^{n} \\
\delta_{\mathbf{2}} \mathbf{W}=\frac{\left\{\mathbf{W}^{2}\right\}-\mathbf{W}^{2}}{2}, \quad \delta_{\mathbf{3}} \mathbf{W}=\frac{\left\{\mathbf{W}^{3}\right\}}{6}-\frac{\left\{\mathbf{W}^{2}\right\} \mathbf{W}+\mathbf{W}\left\{\mathbf{W}^{2}\right\}}{4}+\frac{\mathbf{W}^{3}}{3 \mathbf{R}}
\end{gathered}
$$

Some applications

Universitāt Regensburg

Cusp of Wilson lines

Gatheral-Frenkel web diagrams

True web diagrams

Universitât Regensburg

Cusp of Wilson lines

Universitât Regensburg

Cusp of Wilson lines

Universităt Regensburg

Cusp of Wilson lines

Cusp of Wilson lines

Multi-parton scattering soft-factor

- N cusps of light-like Wilson lines (n and \bar{n} directions)
- $\mathbf{S}\left(b_{1}, \ldots, b_{N}\right)=\left\langle\boldsymbol{\Phi}_{\text {cusp }}\left(b_{1}\right) \ldots \boldsymbol{\Phi}_{\text {cusp }}\left(b_{n}\right)\right\rangle$
- Equivalent to multi-jet production configuration [AV,1707.07606]
- Rapidity anomalous dimension \leftrightarrow soft anomalous dimension

$$
\boldsymbol{\gamma}_{S}\left(v_{1}, \ldots, v_{n}\right)=2 \mathbf{D}\left(b_{1}, \ldots, b_{n} ; \epsilon^{*}\right)
$$

Universitãt Regensburg

$$
\begin{aligned}
& W[\theta]=\frac{a_{s}}{2} \sum_{j_{1}, j_{2}} \theta_{j_{1}}^{A} \theta_{j_{2}}^{A} W_{j_{1}, j_{2}}+\frac{a_{s}^{2}}{3!} \sum_{j_{1} j_{2} j_{3}} i f^{A B C} \theta_{j_{1}}^{A} \theta_{j_{2}}^{B} \theta_{j_{3}}^{C} W_{j_{1} j_{2} j_{3}}+\mathcal{O}\left(a_{s}^{3}\right), \\
& W_{i j}=v_{i j} W\left[\boldsymbol{b}_{i j}\right], \\
& W_{i j k}=v_{i j} v_{i k} W\left[\boldsymbol{b}_{i j}, \boldsymbol{b}_{i k}, \boldsymbol{b}_{j k}\right] .
\end{aligned}
$$

The explicit expressions for W are given in [1608.04920]

$N=2$: TMD soft factor

In this case the application of reduction exponent gives

$$
\begin{aligned}
\ln S^{\mathrm{TMD}}=\sigma(\boldsymbol{b})=2 C_{F} a_{s} & (W(\boldsymbol{b})-W(\mathbf{0}))+C_{F} C_{A} a_{s}^{2}(W(\boldsymbol{b}, \mathbf{0}, \boldsymbol{b})-W(\mathbf{0}, \boldsymbol{b}, \boldsymbol{b})) \\
& -\frac{C_{F} C_{A}}{4} a_{s}^{2}\left(3 W^{2}(\boldsymbol{b})-4 W(\boldsymbol{b}) W(\mathbf{0})+W^{2}(\mathbf{0})\right)+\mathcal{O}\left(a_{s}^{3}\right)
\end{aligned}
$$

$\mathrm{N}=4$: double-scattering soft-factor

$$
\ln S^{[1]}=\sigma\left(\boldsymbol{b}_{14}\right)+\sigma\left(\boldsymbol{b}_{23}\right)+\frac{1}{2}\left(\frac{C_{A}}{2 C_{F}}-1\right)\left(\sigma\left(\boldsymbol{b}_{12}\right)-\sigma\left(\boldsymbol{b}_{13}\right)-\sigma\left(\boldsymbol{b}_{24}\right)+\sigma\left(\boldsymbol{b}_{34}\right)\right)^{2}+\mathcal{O}\left(a_{s}^{3}\right) \text { l }
$$

$$
\begin{align*}
\ln S^{[4]}= & \sigma\left(\boldsymbol{b}_{12}\right)-\sigma\left(\boldsymbol{b}_{13}\right)+\sigma\left(\boldsymbol{b}_{14}\right)+\sigma\left(\boldsymbol{b}_{23}\right)-\sigma\left(\boldsymbol{b}_{24}\right)+\sigma\left(\boldsymbol{b}_{34}\right) \tag{3.27}\\
& +\frac{C_{A}}{4 C_{F}}\left(\sigma\left(\boldsymbol{b}_{13}\right)-\sigma\left(\boldsymbol{b}_{14}\right)-\sigma\left(\boldsymbol{b}_{23}\right)+\sigma\left(\boldsymbol{b}_{24}\right)\right)\left(\sigma\left(\boldsymbol{b}_{12}\right)-\sigma\left(\boldsymbol{b}_{13}\right)-\sigma\left(\boldsymbol{b}_{24}\right)+\sigma\left(\boldsymbol{b}_{34}\right)\right)+\mathcal{O}\left(a_{s}^{3}\right) .
\end{align*}
$$

There is no tri-pole contribution!

$$
\mathbf{S}=\exp \left(\mathbf{T}_{i}^{A} \mathbf{T}_{j}^{A} \sigma\left(b_{i j}\right)+\text { quadrapole }\right)
$$

Absence of color odd-structures

General proof:

effective vertex: $V=-V(n \leftrightarrow \bar{n})$
rotation: $W=W(n \leftrightarrow \bar{n})$

$$
\Rightarrow W_{n \in \text { odd }}=0
$$

The defect is powers of W so it cannot produce odd-structures

Universităt Regensburg

Absence of color odd-structures

General proof:

effective vertex: $V=-V(n \leftrightarrow \bar{n})$
rotation: $W=W(n \leftrightarrow \bar{n})$

$$
\Rightarrow W_{n \in \text { odd }}=0
$$

The defect is powers of W so it cannot produce odd-structures

$$
\mathbf{S}=\exp \left(\sum_{n=2,4, \ldots}^{\infty} \mathbf{T}^{A_{1}} \ldots \mathbf{T}^{A_{n}} \sigma_{A_{1} \ldots A_{n}}\left(b_{1 \ldots n}\right)\right)
$$

Universităt Regensburg

Absence of color odd-structures

General proof:

effective vertex: $V=-V(n \leftrightarrow \bar{n})$
rotation: $W=W(n \leftrightarrow \bar{n})$

$$
\Rightarrow W_{n \in \text { odd }}=0
$$

The defect is powers of W so it cannot produce odd-structures

$$
\mathbf{S}=\exp \left(\sum_{n=2,4, \ldots}^{\infty} \mathbf{T}^{A_{1}} \ldots \mathbf{T}^{A_{n}} \sigma_{A_{1} \ldots A_{n}}\left(b_{1 \ldots n}\right)\right)
$$

$$
\mathbf{D}=\sum_{n=2,4, \ldots}^{\infty} \mathbf{T}^{A_{1}} \ldots \mathbf{T}^{A_{n}} \mathcal{D}_{A_{1} \ldots A_{n}}\left(b_{1 \ldots n}\right)
$$

Absence of color odd-structures

General proof:

effective vertex: $V=-V(n \leftrightarrow \bar{n})$
rotation: $W=W(n \leftrightarrow \bar{n})$

$$
\Rightarrow W_{n \in \text { odd }}=0
$$

The defect is powers of W so it cannot produce odd-structures

$$
\mathbf{S}=\exp \left(\sum_{n=2,4, \ldots}^{\infty} \mathbf{T}^{A_{1}} \ldots \mathbf{T}^{A_{n}} \sigma_{A_{1} \ldots A_{n}}\left(b_{1 \ldots n}\right)\right)
$$

$$
\mathbf{D}=\sum_{n=2,4, \ldots}^{\infty} \mathbf{T}^{A_{1} \ldots} \mathbf{T}^{A_{n}} \mathcal{D}_{A_{1} \ldots A_{n}}\left(b_{1 \ldots n}\right)
$$

$$
\boldsymbol{\gamma}_{S}=\sum_{n=2,4, \ldots}^{\infty} \mathbf{T}^{A_{1}} \ldots \mathbf{T}^{A_{n}} \gamma_{A_{1} \ldots A_{n}}\left(b_{1 \ldots n}\right)
$$

[AV, 1707.07606]

Multiple-gluon exchange webs(MGEWs)

MGEW = diagram with gluons coupled ONLY to WLs [Falcioni, et al, 1407.3477]

Universitãt Regensburg

MGEWs are amazingly simple if WLs are on light-cone

$$
\sim \frac{1}{2} \int_{0}^{\infty} d x_{1,2} d y_{1,2} \Delta\left(x_{1}, y_{1}\right) \Delta\left(x_{2}, y_{2}\right)\left(\theta\left(x_{1}>x_{2}\right)-\theta\left(x_{2}>x_{1}\right)\right)\left(\theta\left(y_{1}>y_{2}\right)-\theta\left(y_{2}>y_{1}\right)\right.
$$

For light-like Wilson line the propagator factorizes

$$
\begin{gathered}
\Delta(x, y) \simeq \frac{\left(v_{x} v_{y}\right)}{\left[-\left(v_{x} x-v_{y} x\right)^{2}+i 0\right]^{1-\epsilon}}=\frac{\left(v_{x} v_{y}\right)^{-\epsilon}}{2^{1-\epsilon} x^{1-\epsilon} y^{1-\epsilon}} \\
\Delta\left(x_{1}, y_{1}\right) \Delta\left(x_{2}, y_{2}\right)=+\Delta\left(x_{2}, y_{1}\right) \Delta\left(x_{1}, y_{2}\right) \\
\text { but } \\
\left(\theta\left(x_{1}>x_{2}\right)-\theta\left(x_{2}>x_{1}\right)\right)=-\left(\theta\left(x_{2}>x_{1}\right)-\theta\left(x_{1}>x_{2}\right)\right)
\end{gathered}
$$

Universitãt Regensburg

- The propagator structure is symmetric under permutations of any pair of coordinates
- V_{n} has anty-symmetric part for $n>1$
- Connected diagrams MUST contain at least $1 V_{n}$ with $n>1$
- The generating function for MGEWs is given by a single diagram EXACTLY

$$
\begin{equation*}
\text { (exact) } \quad W_{\mathrm{MGEW}}^{a b}=-\delta^{a b} \alpha_{s}\left(v_{a} \cdot v_{b}\right)^{\epsilon} \frac{\Gamma^{2}(\epsilon) \Gamma(1-\epsilon)}{(2 \pi)^{1-\epsilon}}\left(\frac{\mu^{2}}{\delta^{2}}\right)^{\epsilon} \tag{5}
\end{equation*}
$$

Consequences

－In MGEW approximation expressions are generated by defect only

$$
\begin{aligned}
& \left\langle\mathbf{\Phi}_{\mathbf{1}} \ldots \mathbf{\Phi}_{\mathbf{n}}\right\rangle_{\mathrm{MGEW}} \\
& \quad=\exp (\underbrace{\mathbf{W}}_{1-\mathrm{loop}}+\underbrace{\delta \mathbf{W}[\mathbf{W}]}_{(\mathrm{n}>1)-\mathrm{loop}})
\end{aligned}
$$

－MGEW approximation is gauge invariant （in a weak sense）

$$
\left.\begin{aligned}
& \left.\left\langle\left(\Phi_{v_{1}}^{\dagger}\right)_{i_{1} j_{1}}\left(\Phi_{v_{2}}\right)_{i_{2} j_{2}}\right\rangle\right|_{\mathrm{MGEW}} \\
& \quad=\exp \left[\sum_{n=1}^{\infty} \alpha_{s}^{n} v_{12}^{n \epsilon} K_{1}^{n}\left(\left(t^{C}\right)_{i_{1 j} j_{1}}^{a} t_{i_{2 j 2}}^{a} E_{n, t t}+\frac{\delta_{i_{1} j_{1}} \delta_{i_{2} j_{2}}}{N_{c}} E_{n, \delta \delta}\right)\right] \\
& \left.\left\langle\left(\Phi_{v_{1}}^{\dagger} \Phi_{v_{2}}\right)_{i j}\right\rangle\right|_{\mathrm{MGEW}}=\delta_{i j} \exp \left[C_{F} \sum_{n=1}^{\infty} \alpha_{s}^{n} v_{12}^{n \epsilon} K_{1}^{n} E_{n, \mathrm{cusp}}\right] \\
& \hline n \\
& \hline 1 \\
& \hline 1 \\
& \hline 2
\end{aligned} \right\rvert\, \begin{array}{l|l|l|}
\hline-\frac{N_{c}}{8} & E_{n, t t} & \frac{1}{n, \delta \delta} \\
\hline 3 & \frac{3-2 N_{c}^{2}}{72} & \frac{1-N_{c}^{2}}{48} \\
\hline 4 & \frac{N_{c}\left(40-33 N_{c}^{2}\right)}{4608} & \frac{5 N_{c}\left(1-N_{c}^{2}\right)}{768} \\
\hline 5 & \frac{-35+93 N_{c}^{2}-57 N_{c}^{4}}{28800} & \frac{\left(1-N_{c}^{2}\right)\left(23 N^{2}-22\right)}{23040} \\
\hline & \frac{N_{c}^{2}\left(71-114 N_{c}^{2}\right)}{57600} \\
\hline
\end{array}
$$

Universitãt Regensburg

Conclusion

Generating function for web diagrams is a powerful tool

- Simple and handy
- Effectively organizes the sub-sets of diagrams
- Color algebra separated from kinematics
- Allows for general analysis
- Absence of color-odd structures in light-like ADs
- Exact generating function for light-like MGEW

What was not discussed

- Iterative sub-structure
- Exponentiation of cut-diagrams

Universitãt Regensburg

