
Generating function of web-diagrams:

theory and applications

Alexey Vladimirov

Regensburg University

Torino, 2020



Introduction

Disclaimer: the work which I am going to present has been done in 2015, since that
time I was (mainly) involved in unrelated topics.

I could forget some details...

Plan of talk

I Generating function for web-diagrams

I Iterative substructure

I Examples of application

Literature

I [1406.6253] (Phys.Rev.D 90 (2014)) initial concept

I [1501.03316] (JHEP 06 (2015) 120) Main article

I [1608.04920] (JHEP 12 (2016) 038) Non-trivial example, 2loop multi-scattering SF

I [1707.07606] (JHEP 04 (2018) 045) Non-trivial example, 3loop decomposition + vertex
reduction (see appendix)
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Wilson lines

The method is valid for arbitrary-path Wilson lines for arbitrary gauge group

I Wilson line on arbitrary path

Φγ = P exp

(
ig

∫ 1

0
dτγ̇µ(τ)AAµ (γ(τ))TA

)
(1)

I TA is the generator of gauge group. Bold font denotes matrices in the group space.
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Exponentiation and web-diagrams

I Original concept [Sterman,1981; Gatheral,1983; Frenkel & Taylor,1984]

I The vacuum expectation of a Wilson loop can be presented as

〈tr (Φγ)〉 =
∑

d∈diag.
C(d)F(d) = exp

 ∑
d∈diag.

C̃(d)F(d)



Color factor

Modi�ed
color factor

Loop
integral

CF C2
F C2

F − CFCA/2 CFCA/2

CF 0 −CFCA/2 CFCA/2
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Exponentiation and web-diagrams

C̃(d) = C(d)−
∑
d′

∏
w∈d′

C̃(w),

where w is two-Wilson line irreducible graph, also known as a web-diagram.

I The derivation is based on the observation that completely symmetric part of
Wilson-line vertex is reducible∫ 1

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3A

A
γ (τ1)ABγ (τ2)ABγ (τ3)TATBTC∫ 1

0
dτ1

∫ 1

0
dτ2

∫ 1

0
dτ3A

A
γ (τ1)ABγ (τ2)ABγ (τ3){TATBTC}+ anti-sym.perm.

I + cyclic property of the trace, exponentiation selects maximum non-Abelian part.

Extension for arbitrary con�guration

I [Mitov,Sterman,Sung,2010] General analysis ⇒ no-simple solution

I [Gardi,Laenen,White,et al,2010 � 2014] Replica method ⇒ algorithmic method

I [AV,2015] Generating function −→
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The core of any diagrammatic exponentiation is the expression for
connected part of Feynman diagrams

I Partition function

Z[J ] =

∫
DAeS[A]+JO

where O is an operator and J is a source

I The resulting expression is exponent of only connected diagrams

Z[J ]

Z[0]
= eW [J]
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Immediate consequence

I If the operator has a form of exponent

O[A] = exp

(∫
dxM(x)o[A]

)
its vacuum expectation value is exponent of only connected diagrams with

operators o

〈O[A]〉 = Z−1[0]

∫
DAeS[A]+

∫
Mo[A] = eW [M ],

where M is "classical source" for operators o.

I W is the generating function for Feynman diagrams

W [M ] =

∫
dxM(x)〈o(x)〉c +

1

2

∫
dx1dx2M(x1)M(x2)〈o(x1)o(x2)〉c (2)

+
1

3!

∫
dx1dx2dx3M(x1)M(x2)M(x3)〈o(x1)o(x2)o(x3)〉c + ...
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Abelian exponentiation

I Abelian Wilson line is an exponent

ΦQED = P exp

(
ie

∫ 1

0
dτAγ(τ)

)
= exp

(
ie

∫ 1

0
dτAγ(τ)

)
(3)

I Operator is
∫ 1
0 dτAγ(τ)

I The source is ie.
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Non-Abelian exponentiation

I Magnus expansion

Φγ = P exp

(
ig

∫
dτAAγ (τ)TA

)
= exp

(
TA

∞∑
n=1

V An

)
(4)

V A1 = ig

∫ 1

0
dτ0tr

(
TAA0

)
V A2 = −(ig)2

∫ 1

0
dτ0

∫ τ0

0
dτ1tr

(
TA[A0,A1]

)
V A3 =

(ig)3

3

∫ 1

0
dτ0

∫ τ0

0
dτ1

∫ τ1

0
dτ2tr

(
TA{[[A0,A1],A2]− [[A0,A2],A1]}

)
V A4 =

(ig)4

6

∫ 1

0
dτ0

∫ τ0

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ4 ×

tr
(
TA{[[[A1,A2],A3],A0]− [[[A0,A1],A2],A3] + [[[A0,A3],A2],A1]− [[[A2,A3],A1],A0]}

)
...

A.Vladimirov Web-diagrams June 17, 2020 9 / 25



Non-Abelian exponentiation

I Magnus expansion

Φγ = P exp

(
ig

∫
dτAAγ (τ)TA

)
= exp

(
TA

∞∑
n=1

V An

)
(4)

A.Vladimirov Web-diagrams June 17, 2020 9 / 25



Some properties of V

I Symmetric with respect to permutation of "legs"

I (mostly)Anti-Symmetric with respect to permutation of momenta or color

I Has lower degree of IR divergence due to cancellation of "surface divergence"

V2 →
1

k1(k1 + k2)
−

1

k2(k1 + k2)
=

k2 − k1
k1k2(k1 + k2)

A.Vladimirov Web-diagrams June 17, 2020 10 / 25



Generating function for web-diagrams

W =
∞∑
n=1

Wn, Wn = TA1 ...TAn 〈V A1 ...V An 〉c

I Note 1: W is completely symmetric in A1...An
I Note 2: Only connected diagrams (but non-necessary Wilson-line-irreducible)

I Note 3: Color coe�cients are maximally non-Abelian

I Note 4: Actually, W has smaller set of diagrams then ordinary "webs"
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Φγ = exp

(
TA

∞∑
n=1

V An

)

I T is source, and V 's are operators!

〈Φγ〉 = Z−1[0]

∫
DAeiS+TAVA = Z[T]

A problem:

There is

no matrix

exponentiation

Z[T ] = eW[T]

Matrix Matrix
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"Colorless" Wilson line.

I Let me screw out the matrix component of the Wilson line

Φγ = eT
AV A = e

TA δ
δθA eθ

BV B
∣∣∣
θ=0

Reduction exponent
Replaces θ's by T

Colorless WL

GF for webs

〈Φγ〉 = e
TA δ

δθA 〈eθ
BV B 〉 = e

TA δ
δθA eW [θ]

∣∣∣
θ=0

I In this way the problem of color algebra is separated from the problem of loop-diagram
computation
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Final form

〈Φγ〉 = e
TA δ

δθA eW [θ]
∣∣∣
θ=0

= eW[T]+δW

Generating
function for webs

Defect of
exponentiation

I The defect is the penalty terms for matrix exponentiation

I The defect is algebraic function of W (all order expression (4.30) in [1501.0331])

I Note : W and δW are independently gauge-invariant

δW =
∞∑
n=2

δnW, δnW ∼Wn

δ2W =
{W2} −W2

2
, δ3W =

{W3}
6
−
{W2}W + W{W2}

4
+

W3

3
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Some applications
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Cusp of Wilson lines

Gatheral-Frenkel web diagrams

True web diagrams

Zero

SameSameSameSame Di�erent

∼
∫ ∞
0

dx1,2dy1,2∆(x1, y1)∆(x2, y2)θ(x2 > x1)θ(y1 > y2)

∼
1

2

∫ ∞
0

dx1,2dy1,2∆(x1, y1)∆(x2, y2)

(θ(x1 > x1)− θ(x2 > x1))(θ(y1 > y2)− θ(y2 > y1)

δ2W ∼
1

2

(∫ ∞
0

dx1dy1∆(x1, y1)

)2

Defect

The sum gives the known result
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Multi-parton scattering soft-factor

I N cusps of light-like Wilson lines (n and
n̄ directions)

I S(b1, ..., bN ) = 〈Φcusp(b1)...Φcusp(bn)〉
I Equivalent to multi-jet production

con�guration [AV,1707.07606]

I Rapidity anomalous dimension ↔ soft
anomalous dimension

γγγS(v1, ..., vn) = 2D(b1, ..., bn; ε∗)
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The explicit expressions for W are given in [1608.04920]

N = 2: TMD soft factor

In this case the application of reduction exponent gives
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N=4: double-scattering soft-factor

There is no tri-pole contribution!

S = exp
(
TAi TAj σ(bij) + quadrapole

)
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Absence of color odd-structures

+1 +1 +1

-1 -1 +1

General proof:

e�ective vertex: V = −V (n↔ n̄)
rotation: W = W (n↔ n̄)

⇒ Wn∈odd = 0

The defect is powers of W
so it cannot produce odd-structures

S = exp
(∑∞

n=2,4,... T
A1 ...TAnσA1...An (b1...n)

)
D =

∑∞
n=2,4,... T

A1 ...TAnDA1...An (b1...n)

γγγS =
∑∞
n=2,4,... T

A1 ...TAnγA1...An (b1...n) [AV,1707.07606]
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Multiple-gluon exchange webs(MGEWs)
MGEW = diagram with gluons coupled ONLY to WLs [Falcioni, et al, 1407.3477]
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MGEWs are amazingly simple if WLs are on light-cone

=0

∼
1

2

∫ ∞
0

dx1,2dy1,2∆(x1, y1)∆(x2, y2)(θ(x1 > x2)− θ(x2 > x1))(θ(y1 > y2)− θ(y2 > y1)

For light-like Wilson line the propagator factorizes

∆(x, y) '
(vxvy)

[−(vxx− vyx)2 + i0]1−ε
=

(vxvy)−ε

21−εx1−εy1−ε

∆(x1, y1)∆(x2, y2) = +∆(x2, y1)∆(x1, y2)
but

(θ(x1 > x2)− θ(x2 > x1)) = −(θ(x2 > x1)− θ(x1 > x2))
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MGEWs are amazingly simple if WLs are on light-cone

=0 =0 =0 =0 =06=0

I The propagator structure is symmetric under permutations of any pair of coordinates

I Vn has anty-symmetric part for n > 1

I Connected diagrams MUST contain at least 1 Vn with n > 1

I The generating function for MGEWs is given by a single diagram EXACTLY

(exact) Wab
MGEW = −δabαs(va · vb)ε

Γ2(ε)Γ(1− ε)
(2π)1−ε

(
µ2

δ2

)ε
. (5)
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MGEWs to all orders

Consequences

I In MGEW approximation expressions are
generated by defect only

〈Φ1...Φn〉MGEW

= exp
(

W︸︷︷︸
1-loop

+ δW[W]︸ ︷︷ ︸
(n>1)-loop

)

I MGEW approximation is gauge invariant
(in a weak sense)
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Conclusion

Generating function for web diagrams is a powerful tool

I Simple and handy
I E�ectively organizes the sub-sets of diagrams

I Color algebra separated from kinematics

I Allows for general analysis
I Absence of color-odd structures in light-like ADs
I Exact generating function for light-like MGEW

What was not discussed

I Iterative sub-structure

I Exponentiation of cut-diagrams

A.Vladimirov Web-diagrams June 17, 2020 25 / 25


