Soft/rapidity anomalous dimensions correspondence \&

 rapidity renormalization theorem
Alexey A. Vladimirov

Institut für Theoretische Physik
Universität Regensburg
Hamburg
Feb. 2017

Universitāt Regensburg

This talk is about very recent achievements.
I will talk about several seemly different processes. I will try to separate statements clearly, ask questions!

Outline of talk

- State of problem: soft factors and rapidity divergences
- Example 1: Soft factor and rapidity decomposition for TMD factorization
- Example 2: Soft factor and rapidity decomposition for Double-Drell-Yan ([AV,1608.04920])
- Soft factors for multi-parton scattering, and multi-jet production
- Soft/rapidity correspondence and its consequences ([AV,1610.05791])
- Rapidity renormalization theorem and its consequences

Universitãt Regensburg

General structure of the factorization theorems

The modern factorization theorems have the following general structure

- This is typical outcome of SCET
- For many interesting cases the individual terms in the product are singular, and requires redefinition/refactorization
- In general, the factorization task is hidden in soft factors, (they mix the singularities of different field modes)

TMD factorization

TMD factorization $\left(Q^{2} \gg q_{T}^{2}\right)$ gives us the following expression

$$
\frac{d \sigma}{d Q d y d^{2} q_{T}} \sim \int d^{4} x e^{i q x} \sum_{X}\left\langle h_{1}\right| J^{\mu}(x)\left|X ; h_{2}\right\rangle\left\langle X ; h_{2}\right| J^{\nu}(0)\left|h_{1}\right\rangle
$$

$\frac{d \sigma}{d Q d y d^{2} q_{T}} \sim \int_{\text {RG equation }} d^{2} b_{T} e^{-i(q b) T H\left(Q^{2}\right)}$

power suppressed terms

TMD FF (singular)
TMD PDF (singular)
All components of factorization formula contain rapidity divergences.
Within soft factor rapidity divergencs entangle PDF and FF

TMD soft factor

$$
S\left(\mathbf{b}_{T}\right)=\langle 0| \operatorname{Tr}\left(\mathbf{\Phi}_{n}\left(\mathbf{0}_{T}\right) \boldsymbol{\Phi}_{n}^{\dagger}\left(\mathbf{b}_{T}\right) \mathbf{\Phi}_{-n}\left(\mathbf{b}_{T}\right) \mathbf{\Phi}_{-\bar{n}}^{\dagger}\left(\mathbf{0}_{T}\right)\right)|0\rangle
$$

Light-like vectors:

$$
n^{2}=\bar{n}^{2}=0, \quad(n \cdot \bar{n})=1
$$

Wilson line (ray)

$$
\mathbf{\Phi}_{v}(x)=P \exp \left(i g \int_{0}^{\infty} d \sigma v^{\mu} A_{\mu}^{A}(v \sigma+x) \mathbf{T}^{A}\right)
$$

Multiple divergences!

TMD soft factor

$$
S\left(\mathbf{b}_{T}\right)=\langle 0| \operatorname{Tr}\left(\boldsymbol{\Phi}_{n}\left(\mathbf{0}_{T}\right) \boldsymbol{\Phi}_{n}^{\dagger}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-n}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\left(\mathbf{0}_{T}\right)\right)|0\rangle
$$

$$
\begin{aligned}
\int d x d y & D(x-y) \\
& =\quad \int_{0}^{\infty} d x^{+} \int_{0}^{\infty} d y^{-} \frac{1}{x^{+} y^{-}} \\
& =\int_{0}^{\infty} \frac{d x^{+}}{x^{+}} \int_{0}^{\infty} \frac{d y^{-}}{y^{-}} \\
& =(\mathrm{UV}+\mathrm{IR})(\mathrm{UV}+\mathrm{IR})
\end{aligned}
$$

Some people set it to zero.

TMD soft factor

TMD soft factor

$$
S\left(\mathbf{b}_{T}\right)=\langle 0| \operatorname{Tr}\left(\mathbf{\Phi}_{n}\left(\mathbf{0}_{T}\right) \boldsymbol{\Phi}_{n}^{\dagger}\left(\mathbf{b}_{T}\right) \mathbf{\Phi}_{-n}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\left(\mathbf{0}_{T}\right)\right)|0\rangle
$$

$$
\begin{array}{rl}
d x d y & D(x-y) \\
= & \int_{0}^{\infty} d x^{+} \int_{0}^{\infty} d y^{-} \frac{1}{\left(2 x^{+} y^{-}+\mathbf{b}_{T}^{2}\right)} \\
= & \text { rap. div. at } \lim _{\lambda \rightarrow 0}\left\{x=\lambda, y=\lambda^{-1}\right\}
\end{array}
$$

Rapidity divergence is a special kind of divergences, UV\& IR

Does not cancel.
δ-regularization + dimension regularization $(\epsilon>0)$

$$
P \exp \left(-i g \int_{0}^{\infty} d \sigma n^{\mu} A_{\mu}(n \sigma)\right) \rightarrow P \exp \left(-i g \int_{0}^{\infty} d \sigma n^{\mu} A_{\mu}(n \sigma) e^{-\delta \sigma}\right)
$$

Nice, and continent composition of regularizations, that clear separate divergences.

In this calculation scheme every divergece takes particular form

$$
\left(\frac{\mathbf{b}^{2}}{4}\right)^{\epsilon}\left(\ln \left(\delta^{+} \delta^{-} \frac{\mathbf{b}^{2} e^{2 \gamma_{E}}}{4}\right)-\psi(-\epsilon)-\gamma_{E}\right)+\left(\delta^{+} \delta^{-}\right)^{-\epsilon} \Gamma^{2}(-\epsilon)
$$

δ-regularization + dimension regularization $(\epsilon>0)$

$$
P \exp \left(-i g \int_{0}^{\infty} d \sigma n^{\mu} A_{\mu}(n \sigma)\right) \rightarrow P \exp \left(-i g \int_{0}^{\infty} d \sigma n^{\mu} A_{\mu}(n \sigma) e^{-\delta \sigma}\right)
$$

Nice, and continent composition of regularizations, that clear separate divergences.

- Rapidity divergences happen only in one sector of diagram and independent on another
- The rules of counting the rapidity logarithms $\ln \left(\delta^{+} \delta^{-}\right)$are very simple.
- Sub-graph contains rapidity divergence if gluon can be radiated from cusp to infinity.
- Count all divergent sub-graphs and remove them
- Repeat

Just like like UV divergences! (not accidental!)

Examples of high degree divergences

- Sub-graph contains rapidity divergence if gluon can be radiated from cusp to infinity.
- Count all divergent sub-graphs and remove them
- Repeat

Just like like UV divergences! (not accidental!)

Examples of low degree divergences

$\ln \delta^{+} \delta^{-}$

$\ln \delta^{+} \delta^{-}$

$\ln \delta^{+} \delta^{-}$

$\ln \delta^{+} \delta^{-}$

Typical expression
Generally (say at NNLO) one expects the following form (finite $\epsilon, \delta \rightarrow 0$)

$$
S^{[2]}=\underbrace{\overbrace{A_{1} \boldsymbol{\delta}^{-2 \epsilon}+A_{2} \boldsymbol{\delta}^{-\epsilon} \boldsymbol{B}^{\epsilon}}^{\mathrm{IR}}+\boldsymbol{B}^{2 \epsilon}\left(A_{3} \ln ^{2}(\boldsymbol{\delta} B)\right.}_{\text {cancel in sum of diagram }}+A_{4} \ln (\boldsymbol{\delta} B)+A_{5})
$$

- Terms $\sim(\boldsymbol{\delta})^{-\epsilon}$ cancel exactly at all orders (proved!)
- A_{3} cancels due to Ward identity (alike leading UV pole for cusp)(what about NNNLO?)

The most important property of SF is that its logarithm is linear in $\ln \left(\delta^{+} \delta^{-}\right)$(proved?)

$$
S\left(b_{T}\right)=\exp \left(A\left(b_{T}, \epsilon\right) \ln \left(\delta^{+} \delta^{-}\right)+B\left(b_{T}, \epsilon\right)\right)
$$

It allows to split rapidity divergences and define individual TMDs.

$$
\exp \left(A \ln \left(\delta^{+} \delta^{-}\right)+B\right)=\exp \left(\frac{A}{2} \ln \left(\left(\delta^{+}\right)^{2} \zeta\right)+\frac{B}{2}\right) \exp \left(\frac{A}{2} \ln \left(\left(\delta^{-}\right)^{2} \zeta^{-1}\right)+\frac{B}{2}\right)
$$

$$
d \sigma \sim \int d^{2} b_{T} e^{-i(q b)_{T}} H\left(Q^{2}\right) \quad \Phi_{h 1}\left(z_{1}, b_{T}\right) S\left(b_{T}\right) \Delta_{h_{2}}\left(z_{2}, b_{T}\right)+Y
$$

spliting rapidity singularities

$$
S\left(b_{T}\right) \rightarrow \sqrt{S\left(b_{T} ; \zeta^{+}\right)} \sqrt{S\left(b_{T} ; \zeta^{-}\right)}
$$

$$
d \sigma \sim \int d^{2} b_{T} e^{-i(q b)_{T}} H\left(Q^{2}\right) F\left(z_{1}, b_{T} ; \zeta^{+}\right) D\left(z_{2}, b_{T} ; \zeta^{-}\right)+Y
$$

The extra "factorization" introduces extra scale ζ.
And corresponded evolution equation

$$
\zeta \frac{d}{d \zeta} F=\frac{A}{2} F=-\mathcal{D} F
$$

Rapidity anomalous dimension

- The factorization of rapidity singularities in the TMD case can be shown indirectly at $b \rightarrow 0$, using collinear factorization for (integrated) DY and symmetry arguments.
- Checked at NNLO (two-loops)
[Echevarria,Scimemi,AV,1511.05590],[Lübbert,Oredsson,Stahlhofen,1602.01829], [Li,Neill,Zhu,1604.00392]
- The direct all-order proof is absent (but will be presented here.).
- Nothing is known about large (finite) b (however, leading renormalon part also factorizes [Scimemi,AV,1609.06047]).

Let me present another, less practical, but more general example.

Double-Drell-Yan scattering

Universitãt Regensburg

Double Drell-Yan scattering

- Experimental status is doubtful
- Factorization is proved (in the weak form) [Diehl,et al,1510.08696]
- In many aspects similar to TMD factorization (SCET II)
- The same problem of rapidity factorization

$$
\frac{d \sigma}{d X} \sim \int\left[d b_{T} e^{-i(q b)_{T}}\right] H_{1}\left(Q_{1}^{2}\right) H_{2}\left(Q_{2}^{2}\right) F_{h 1}^{A}\left(z_{1,2}, b_{1,2,3,4}\right) S^{A B_{B}}\left(b_{1,2,3,4}\right) \bar{F}_{h 2}^{B}\left(z_{1,2}, b_{1,2,3,4}\right)+Y
$$

Structure is similar to TMD Drell-Yan but now it contains COLOR

Universitãt Regensburg

Color structure makes a lot of difference

$$
F_{h 1}^{A} S^{A B} \bar{F}_{h 2}^{B} \xrightarrow{\text { singlets }}\left(F^{\mathbf{1}}, F^{\mathbf{8}}\right)\left(\begin{array}{cc}
S^{\mathbf{1 1}} & S^{\mathbf{1 8}} \\
S^{\mathbf{8 1}} & S^{88}
\end{array}\right)\binom{\bar{F}^{\mathbf{1}}}{\bar{F}^{8}}
$$

- Soft-factors $S^{\mathbf{i j}}$ are sum of Wilson loops and double Wilson loops (all possible connections).
- Soft-factors non-zero even in the integrated case.

Evaluation at NNLO [AV, 1608.04920]

- Brute force evaluation would lead a lot of (similar) diagrams.
- The better way is to compute the generating function [AV, 1406.6253, 1501.03316]

- All non-trivial three-Wilson line interactions cancel!
- The final result expresses exactly via TMD soft factor only!

TMD SF $: \ln S^{\mathrm{TMD}}=\sigma(\mathbf{b})$

Single loop SF : $\quad \ln S^{[4]}=\sigma\left(\mathbf{b}_{12}\right)-\sigma\left(\mathbf{b}_{13}\right)+\sigma\left(\mathbf{b}_{14}\right)+\sigma\left(\mathbf{b}_{23}\right)-\sigma\left(\mathbf{b}_{24}\right)+\sigma\left(\mathbf{b}_{34}\right)$

$$
+\frac{C_{A}}{4 C_{F}}\left(\sigma\left(\mathbf{b}_{13}\right)-\sigma\left(\mathbf{b}_{14}\right)-\sigma\left(\mathbf{b}_{23}\right)+\sigma\left(\mathbf{b}_{24}\right)\right)\left(\sigma\left(\mathbf{b}_{12}\right)-\sigma\left(\mathbf{b}_{13}\right)-\sigma\left(\mathbf{b}_{24}\right)+\sigma\left(\mathbf{b}_{34}\right)\right)
$$

Double loop SF : $\quad \ln S^{[1]}=\sigma\left(\mathbf{b}_{14}\right)+\sigma\left(\mathbf{b}_{23}\right)+\frac{1}{2}\left(\frac{C_{A}}{4 C_{F}}-1\right)\left(\sigma\left(\mathbf{b}_{12}\right)-\sigma\left(\mathbf{b}_{13}\right)-\sigma\left(\mathbf{b}_{24}\right)+\sigma\left(\mathbf{b}_{34}\right)\right)^{2}$

- This structure is independent on regularization procedure!

$$
S^{\mathrm{TMD}}=e^{\sigma(\mathbf{b})}=e^{\sigma^{+}(\mathbf{b})} e^{\sigma^{-}(\mathbf{b})}, \quad \sigma^{ \pm}=\frac{A}{2} \ln \left(\left(\delta^{+}\right)^{2} \zeta^{ \pm 1}\right)+\frac{B}{2}
$$

Matrix factorization of rapidity divergences
Using the decomposition above, inserting it into DPD SF we obtain matrix relation

$$
S^{\mathrm{DPD}}=s^{T}\left(\ln \left(\delta^{+}\right)\right) \cdot s\left(\ln \left(\delta^{-}\right)\right)
$$

$s=\exp \left[\left(\begin{array}{cc}A^{\mathbf{1 1}}\left(\mathbf{b}_{1,2,3,4}\right) & A^{\mathbf{1 8}}\left(\mathbf{b}_{1,2,3,4}\right) \\ A^{\mathbf{8 1}}\left(\mathbf{b}_{1,2,3,4}\right) & A^{\mathbf{8 8}}\left(\mathbf{b}_{1,2,3,4}\right)\end{array}\right) \ln (\delta)+\left(\begin{array}{cc}B^{\mathbf{1 1}}\left(\mathbf{b}_{1,2,3,4}\right) & B^{\mathbf{1 8}}\left(\mathbf{b}_{1,2,3,4}\right) \\ B^{\mathbf{8 1}}\left(\mathbf{b}_{1,2,3,4}\right) & B^{\mathbf{8 8}}\left(\mathbf{b}_{1,2,3,4}\right)\end{array}\right)\right]$
A^{ij} and $B^{\mathbf{i j}}$ are rather complicated non-linear compositions of TMD's A and B

Universităt Regensburg

Finalizing DPD factorization

$$
\begin{gathered}
\frac{d \sigma}{d X} \sim \int\left[d b_{T} e^{-i(q b)_{T}}\right] H_{1}\left(Q_{1}^{2}\right) H_{2}\left(Q_{2}^{2}\right)\left(F^{\mathbf{1}}, F^{\mathbf{8}}\right)\left(\begin{array}{cc}
S^{\mathbf{1 1}} & S^{\mathbf{1 8}} \\
S^{\mathbf{8 1}} & S^{\mathbf{8 8}}
\end{array}\right)\binom{\bar{F}^{\mathbf{1}}}{\bar{F}^{\mathbf{8}}}+Y \\
\text { spliting rapidity singularities } \\
S\left(b_{1,2,3,4}\right) \rightarrow s^{T}\left(b_{1,2,3,4} ; \zeta^{+}\right) s\left(b_{1,2,3,4} ; \zeta^{-}\right) \\
\downarrow \\
\frac{d \sigma}{d X} \sim \int\left[d b_{T} e^{-i(q b)_{T}}\right] e^{-i(q b)_{T}} H_{1}\left(Q_{1}^{2}\right) H_{2}\left(Q_{2}^{2}\right) F\left(z_{1,2}, b_{1,2,3,4} ; \zeta^{+}\right) \bar{F}\left(z_{1,2}, b_{1,2,3,4} ; \zeta^{-}\right)+Y \\
\uparrow \\
\text { DPD } \\
\left(s F_{h_{1}}\right)^{T}
\end{gathered}
$$

Matrix rapidity evolution

$$
\frac{d F\left(z_{1,2}, \mathbf{b}_{1,2,3,4} ; \zeta, \mu\right)}{d \ln \zeta}=-F\left(z_{1,2}, \mathbf{b}_{1,2,3,4} ; \zeta, \mu\right) \mathbf{D}\left(\mathbf{b}_{1,2,3,4}, \mu\right)
$$

where \mathbf{D} is matrix build (linearly) of TMD rapidity anomalous dimensions. E.g.

$$
D^{\mathbf{1 8}}=\frac{\mathcal{D}\left(\mathbf{b}_{12}\right)-\mathcal{D}\left(\mathbf{b}_{13}\right)-\mathcal{D}\left(\mathbf{b}_{24}\right)+\mathcal{D}\left(\mathbf{b}_{34}\right)}{\sqrt{N_{c}^{2}-1}}
$$

Let's look at multi-parton scattering

- Just as double-parton, but multi..(four WL's \rightarrow arbitrary number WL's)
- Factorization can be/is proven [Diehl, et al,1510.08696,1111.0910]
- Too many color-singlets, better to work with explicit color indices (color-multi-matrix)

$$
\Sigma^{\left(a_{1} \ldots a_{N}\right) ;\left(d_{1} \ldots d_{N}\right)}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{N}\right)=\boldsymbol{\Sigma}\left(\mathbf{b}_{1, \ldots, N}\right)
$$

Result at NNLO is amazingly simple

Universitãt Regensburg

Let's look at multi-parton scattering

- Just as double-parton, but multi..(four WL's \rightarrow arbitrary number WL's)
- Factorization can be/is proven [Diehl, et al,1510.08696,1111.0910]
- Too many color-singlets, better to work with explicit color indices (color-multi-matrix)

$$
\Sigma^{\left(a_{1} \ldots a_{N}\right) ;\left(d_{1} \ldots d_{N}\right)}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{N}\right)=\boldsymbol{\Sigma}\left(\mathbf{b}_{1, \ldots, N}\right)
$$

Result at NNLO is amazingly simple
$\boldsymbol{\Sigma}\left(\mathbf{b}_{1, \ldots, N}\right)=\exp \left(-\sum_{i<j} \mathbf{T}_{i}^{A} \mathbf{T}_{j}^{A} \sigma\left(\mathbf{b}_{i j}\right)+\mathcal{O}\left(a_{s}^{3}\right)\right)$

- $\mathbf{T}_{i}^{A} \mathbf{T}_{j}^{A}=$ "dipole"
- $\mathcal{O}\left(a_{s}^{3}\right)$ contains also "color-multipole" terms
- Rapidity factorization for dipole part is straightforward (assuming TMD factorization)

Main question

- Can rapidity factorization be proven at all orders?

Main lessons

- Rapidity divergences characterize interaction of origin with infinity. Do not depend on the rest!
- Has very similar (topologically) structure with UV divergences.

Hint

- The color dependent expression reminds us something.... Multi-particle production!

Universităt Regensburg

Main question

- Can rapidity factorization be proven at all orders?

Main lessons

- Rapidity divergences characterize interaction of origin with infinity. Do not depend on the rest!
- Has very similar (topologically) structure with UV divergences.

Hint

- The color dependent expression reminds us something.... Multi-particle production!

END OF INTRODUCTION

Multi-jet production

$$
\frac{d \sigma}{d X}=H^{I J} f_{A} \otimes f_{B} \otimes J_{1} \otimes J_{2} S^{J I}
$$

Jet 2
picture from
[Stewart, Tackmann, Waalewijn, 0910.0467]

Universitãt Regensburg

Multi-jet production

[Stewart,Tackmann, Waalewijn,0910.0467]

Multi-jet production

- The details of definition for soft factors differs from process to process. Generally: $S \sim\langle 0|[[W i l s o n ~ l i n e s]|0\rangle$
- The soft factor can be product of soft factors
- Soft factors also color matrix (but coupled to hard part).

Structure of N-jet soft factor

$$
\left.\left.\begin{array}{rl}
\mathcal{S}^{\{a d\}}(\{v\})=\sum_{X} w_{X} \Pi_{X}^{\dagger\{a c\}}(\{v\}) \Pi_{X}^{\{c d\}}(\{v\}) \text { Soft factor } \\
\Pi_{X}\{c d\} \\
\sigma_{X}
\end{array}\{v\}\right)=\langle X| T\left[\Phi_{v_{1}}^{c_{1} d_{1}}(0) \ldots \Phi_{v_{N}}^{c_{N} d_{N}}(0)\right]|0\rangle\right) .
$$

Structure of generic soft factor

- Depending on w_{X} soft factors can have very different structure
- Such structure of soft factor appears in many places: multi-jet product, event shapes, hard-collinear factorization and Sudakov factorization, threshold resummation.
- In the most popular configurations the soft factor (or its parts) have been evaluated up to $\mathrm{N}^{3} \mathrm{LO}$
- In the following I consider only $v_{i}^{2}=0$ (massless partons)

Universităt Regensburg

Soft anomalous dimension

- With the proper choice of w_{X} the multi-jet soft factor is IR finite.
- UV divergences are renormalized by the appropriate matrix

$$
\mathbf{S}^{\text {ren }}(\{v\})=\mathbf{Z}^{\dagger}(\{v\}) \mathbf{S}(\{v\}) \mathbf{Z}(\{v\})
$$

Renormalization factor knows only about Π

$$
\begin{gathered}
\mathbf{S}^{\mathrm{ren}}(\{v\})=\sum_{X} w_{X} \boldsymbol{\Pi}_{X}^{\dagger \mathrm{ren}}(\{v\}) \boldsymbol{\Pi}_{X}^{\mathrm{ren}}(\{v\}) \\
\boldsymbol{\Pi}_{X}^{\mathrm{ren}}(\{v\})=\boldsymbol{\Pi}_{X}^{\mathrm{ren}}(\{v\}) \mathbf{Z}(\{v\})
\end{gathered}
$$

- Individually $\boldsymbol{\Pi}$ is horrible object
- Not gauge invariant
- IR singular
- Dependent on X
- However UV factor \mathbf{Z} is well-defined
- Gauge invariant
- Independent on X
- The RG anomalous dimension for operator $\boldsymbol{\Pi}$ is called "soft anomalous dimension"

$$
\mu^{2} \frac{d}{d \mu^{2}} \boldsymbol{\Pi}(\{v\})=\boldsymbol{\Pi}(\{v\}) \gamma_{s}(\{v\})
$$

The soft anomalous dimension is subject of intensive studies

- It is known up to 3 -loops (4-loops in $\mathcal{N}=4 \mathrm{SYM}$)
- It is conformally invariant (rescaling of the vectors $\{v\}$)
- It has structure (dipole part)

$$
\gamma_{s}(\{v\})=-\sum_{i<j} \mathbf{T}_{i}^{A} \mathbf{T}_{j}^{A} \tilde{\gamma}\left(v_{i} \cdot v_{j}\right)+\ldots
$$

- The RG anomalous dimension for operator $\boldsymbol{\Pi}$ is called "soft anomalous dimension"

$$
\mu^{2} \frac{d}{d \mu^{2}} \boldsymbol{\Pi}(\{v\})=\boldsymbol{\Pi}(\{v\}) \gamma_{s}(\{v\})
$$

The soft anomalous dimension is subject of intensive studies

- It is known up to 3-loops (4-loops in $\mathcal{N}=4 \mathrm{SYM})$
- It is conformally invariant (rescaling of the vectors $\{v\}$)
- It has structure (dipole part)

$$
\gamma_{s}(\{v\})=-\sum_{i<j} \mathbf{T}_{i}^{A} \mathbf{T}_{j}^{A} \tilde{\gamma}\left(v_{i} \cdot v_{j}\right)+\ldots
$$

Compare with the rapidity anomalous dimension (dipole part)

$$
\mathbf{D}(\{b\})=-\sum_{i<j} \mathbf{T}_{i}^{A} \mathbf{T}_{j}^{A} \mathcal{D}\left(\left(b_{i}-b_{j}\right)^{2}\right)+\ldots
$$

Rewriting multi-parton scattering soft factor

$$
\begin{array}{r}
\underbrace{\Sigma^{\{a d\}}(\{\mathbf{b}\})=\langle 0| T\left[\left(\Phi_{-\bar{n}}^{a_{1} c_{1}} \Phi_{-n}^{\dagger c_{1} d_{1}}\right)\left(\mathbf{b}_{1}\right) \ldots\left(\Phi_{-\bar{n}}^{a_{N} c_{N}} \Phi_{-n}^{\dagger c_{N} d_{N}}\right)\left(\mathbf{b}_{N}\right)\right]|0\rangle \text { MPS Soft factor }} \boldsymbol{\Sigma}(\{\mathbf{b}\})=\sum_{X} \tilde{w}_{X} \boldsymbol{\Xi}_{\bar{n}, X}^{\dagger}(\{\mathbf{b}\}) \boldsymbol{\Xi}_{n, X}(\{\mathbf{b}\}) \\
\underset{\quad}{\{c c d\}}(\{\mathbf{b}\})=\langle X| T\left[\Phi_{-n}^{\dagger c_{1} d_{1}}\left(\mathbf{b}_{1}\right) \ldots \Phi_{n}^{\dagger c_{N} d_{N}}\left(\mathbf{b}_{N}\right)\right]|0\rangle
\end{array}
$$

Rewriting multi-parton scattering soft factor

$$
\begin{aligned}
& \Sigma^{\{a d\}}(\{\mathbf{b}\})=\langle 0| T\left[\left(\Phi_{-\bar{n}}^{a_{1} c_{1}} \Phi_{-n}^{\dagger c_{1} d_{1}}\right)\left(\mathbf{b}_{1}\right) \ldots\left(\Phi_{-\bar{n}}^{a_{N} c_{N}} \Phi_{-n}^{\dagger c_{N} d_{N}}\right)\left(\mathbf{b}_{N}\right)\right]|0\rangle \text { MPS Soft factor } \\
& \boldsymbol{\Sigma}(\{\mathbf{b}\})=\sum_{X} \tilde{w}_{X} \boldsymbol{\Xi}_{\bar{n}, X}^{\dagger}(\{\mathbf{b}\}) \boldsymbol{\Xi}_{n, X}(\{\mathbf{b}\}) \\
& \Xi_{n, X}^{\{c d\}}(\{\mathbf{b}\})=\langle X| T\left[\Phi_{-n}^{\dagger c_{1} d_{1}}\left(\mathbf{b}_{1}\right) \ldots \Phi_{n}^{\dagger c_{N} d_{N}}\left(\mathbf{b}_{N}\right)\right]|0\rangle
\end{aligned}
$$

Unnatural act
In many aspects $\boldsymbol{\Xi}$ is similar to $\boldsymbol{\Pi}$

- Individually $\boldsymbol{\Xi}$ is horrible object
- Not gauge invariant
- IR singular
- End-point singularities
- Dependent on X
- However it is as horrible as $\boldsymbol{\Pi}$

Conformal-Stereographic transformation

$$
\mathcal{C}: \quad\left\{x^{+}, x^{-}, \mathbf{x}_{T}\right\} \longrightarrow\left\{-\frac{1}{2 x^{+}}, x^{-}-\frac{\mathbf{x}_{T}^{2}}{2 x^{+}}, \frac{\mathbf{x}_{T}}{\sqrt{2} x^{+}}\right\}
$$

Universitãt Regensburg

Conformal-Stereographic transformation

$$
\mathcal{C}:\left\{x^{+}, x^{-}, \mathbf{x}_{T}\right\} \longrightarrow\left\{-\frac{1}{2 x^{+}}, x^{-}-\frac{\mathbf{x}_{T}^{2}}{2 x^{+}}, \frac{\mathbf{x}_{T}}{\sqrt{2} x^{+}}\right\}
$$

- ∞-sphere transforms to the transverse plane (at origin)

Universitãt Regensburg

Conformal-Stereographic transformation

$$
\mathcal{C}:\left\{x^{+}, x^{-}, \mathbf{x}_{T}\right\} \longrightarrow\left\{-\frac{1}{2 x^{+}}, x^{-}-\frac{\mathbf{x}_{T}^{2}}{2 x^{+}}, \frac{\mathbf{x}_{T}}{\sqrt{2} x^{+}}\right\}
$$

- ∞-sphere transforms to the transverse plane (at origin)
- 0 transforms to the transverse plane (at $-\infty n$)

Universităt Regensburg

Conformal-Stereographic transformation

$$
\mathcal{C}:\left\{x^{+}, x^{-}, \mathbf{x}_{T}\right\} \longrightarrow\left\{-\frac{1}{2 x^{+}}, x^{-}-\frac{\mathbf{x}_{T}^{2}}{2 x^{+}}, \frac{\mathbf{x}_{T}}{\sqrt{2} x^{+}}\right\}
$$

- ∞-sphere transforms to the transverse plane (at origin)
- 0 transforms to the transverse plane (at $-\infty n$)
- Scalar products $2\left(v_{i} \cdot v_{j}\right)$ transforms to $\left(\mathbf{b}_{i}-\mathbf{b}_{j}\right)^{2}$

Universitāt Regensburg

Conformal-Stereographic transformation

$$
\mathcal{C}:\left\{x^{+}, x^{-}, \mathbf{x}_{T}\right\} \longrightarrow\left\{-\frac{1}{2 x^{+}}, x^{-}-\frac{\mathbf{x}_{T}^{2}}{2 x^{+}}, \frac{\mathbf{x}_{T}}{\sqrt{2} x^{+}}\right\}
$$

- ∞-sphere transforms to the transverse plane (at origin)
- 0 transforms to the transverse plane (at $-\infty n$)
- Scalar products $2\left(v_{i} \cdot v_{j}\right)$ transforms to $\left(\mathbf{b}_{i}-\mathbf{b}_{j}\right)^{2}$

Universităt Regensburg

Conformal-Stereographic transformation

$$
\mathcal{C}: \quad\left\{x^{+}, x^{-}, \mathbf{x}_{T}\right\} \longrightarrow\left\{-\frac{1}{2 x^{+}}, x^{-}-\frac{\mathbf{x}_{T}^{2}}{2 x^{+}}, \frac{\mathbf{x}_{T}}{\sqrt{2} x^{+}}\right\}
$$

- ∞-sphere transforms to the transverse plane (at origin)
- 0 transforms to the transverse plane (at $-\infty n$)
- Scalar products $2\left(v_{i} \cdot v_{j}\right)$ transforms to $\left(\mathbf{b}_{i}-\mathbf{b}_{j}\right)^{2}$

Universitãt Regensburg

Conformal-Stereographic transformation

$$
\begin{gathered}
\mathcal{C} \Phi_{v}^{c d}(0)=\Phi_{-n}^{\dagger c d}\left(\frac{\mathbf{v}_{T}}{\sqrt{2} v^{+}}\right) \\
\mathbf{\Pi}_{X=0}(\{v\}) \longrightarrow \boldsymbol{\Xi}_{X=0}(\{\mathbf{b}\})
\end{gathered}
$$

- UV divergences of $\boldsymbol{\Pi}$ map onto the rapidity divergences $\boldsymbol{\Xi}$
- Rapidity divergent part of $\boldsymbol{\Xi}$ is gauge invariant and independent on X (like UV of $\boldsymbol{\Pi}$)

Universitãt Regensburg

In conformal field theory

$$
\boldsymbol{\Pi}_{X}(\{v\}) \mathbf{Z}(\{v\}) \xrightarrow{\mathcal{C}} \boldsymbol{\Xi}_{X}(\{\mathbf{b}\}) \mathbf{R}(\{\mathbf{b}\})
$$

- In conformal field theory rapidity divergences renormalizable (for every factor $\boldsymbol{\Xi}$).
- \mathbf{R} can be obtained from \mathbf{Z} (by some transformation of regularizations)

$$
\text { UV RGE: } \quad \mu^{2} \frac{d}{d \mu^{2}} \boldsymbol{\Pi}_{X}=\boldsymbol{\Pi}_{X} \boldsymbol{\gamma}_{s} \xrightarrow{\mathcal{C}} \zeta \frac{d}{d \zeta} \boldsymbol{\Xi}_{X}=2 \boldsymbol{\Xi}_{X} \mathbf{D} \quad: \text { Rap. RGE }
$$

In conformal field theory

$$
\boldsymbol{\Pi}_{X}(\{v\}) \mathbf{Z}(\{v\}) \xrightarrow{\mathcal{C}} \boldsymbol{\Xi}_{X}(\{\mathbf{b}\}) \mathbf{R}(\{\mathbf{b}\})
$$

- In conformal field theory rapidity divergences renormalizable (for every factor $\boldsymbol{\Xi}$).
- \mathbf{R} can be obtained from \mathbf{Z} (by some transformation of regularizations)

$$
\text { UV RGE: } \quad \mu^{2} \frac{d}{d \mu^{2}} \boldsymbol{\Pi}_{X}=\boldsymbol{\Pi}_{X} \boldsymbol{\gamma}_{s} \xrightarrow{c} \zeta \frac{d}{d \zeta} \boldsymbol{\Xi}_{X}=2 \boldsymbol{\Xi}_{X} \mathbf{D} \quad: \text { Rap. RGE }
$$

Since anomalous dimensions independent on regularization we have simple relation

$$
\boldsymbol{\gamma}_{s}(\{v\})=2 \mathbf{D}(\{\mathbf{b}\})
$$

Indeed, such equality has been recently observed at NNNLO in $\mathcal{N}=4 \mathrm{SYM}$
[Li,Zhu,1604.01404]

QCD at critical coupling

Conformal symmetry of QCD is restored at critical coupling a^{*}
In dimensional regularization
At critical coupling β-function vanish $\left(a_{s}=g^{2} /(4 \pi)^{2}\right)$

$$
\beta(g)=g\left(-\epsilon-a_{s} \beta_{0}-a_{s}^{2} \beta_{1}-\ldots\right),
$$

Equation $\beta\left(g^{*}\right)=0$ defines the value of $a_{s}^{*}(\epsilon)$ or equivalently defines the number of dimensions in which QCD critical

$$
\beta\left(\epsilon^{*}\right)=0 \quad \longrightarrow \quad \epsilon^{*}=-a_{s} \beta_{0}-a_{s}^{2} \beta_{1}-\ldots
$$

In MS-like schemes UV anomalous dimension is independent on definition of ϵ.
UV anomalous dimensions are conformal invariant
[Vasiliev; 90's]
for modern applications see e.g.
[Braun,Manashov,1306,5644]

Soft/rapidity anomalous dimension correspondence

- UV anomalous dimension independent on ϵ
- Rapidity anomalous dimension does depend on ϵ
- At ϵ^{*} conformal symmetry of QCD is restored

Universitãt Regensburg

Soft/rapidity anomalous dimension correspondence

- UV anomalous dimension independent on ϵ
- Rapidity anomalous dimension does depend on ϵ
- At ϵ^{*} conformal symmetry of QCD is restored

In QCD

$$
\boldsymbol{\gamma}_{s}(\{v\})=2 \mathbf{D}\left(\{\mathbf{b}\}, \epsilon^{*}\right)
$$

- Seems to be absolutely unique relation
- Exact relation!
- Connects different regimes of QCD
- Physical value is $\mathbf{D}(\{\mathbf{b}\}, 0)$
\rightarrow Lets test it.

Universitãt Regensburg

TMD rapidity anomalous dimension

- $N=2$, no matrix structure,

$$
\boldsymbol{B}=\frac{b^{2}}{4}, L=\ln \left(\frac{\boldsymbol{B} \mu^{2}}{e^{-2 \gamma_{E}}}\right) \leftrightarrow \ln \left(\frac{v_{12} \mu^{2}}{\nu^{2}}\right)
$$

$\gamma_{s}^{(1)}=L+0$
NLO NLO

$$
-2\left(\boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)+\frac{1}{\epsilon}\right)=\mathcal{D}^{(1)}
$$

Obvious relation, QCD is confirmal at leading order.

$$
\nu^{2}=4 e^{-2 \gamma_{E}}
$$

TMD rapidity anomalous dimension

- $N=2$, no matrix structure,

$$
\boldsymbol{B}=\frac{b^{2}}{4}, L=\ln \left(\frac{\boldsymbol{B} \mu^{2}}{e^{-2 \gamma_{E}}}\right) \leftrightarrow \ln \left(\frac{v_{12} \mu^{2}}{\nu^{2}}\right)
$$

$$
\begin{array}{rlr|}
\gamma_{s}^{(1)}= & L+0 & \\
\gamma_{s}^{(2)}= & {\left[\left(\frac{67}{9}-2 \zeta_{2}\right) C_{A}-\frac{20}{18} N_{f}\right] L+} & \\
& \left(28 \zeta_{3}+\ldots\right) C_{A}+\left(\frac{112}{27}-\frac{4}{3} \zeta_{2}\right) N_{f} & \mathrm{~N}^{2} \mathrm{LO}
\end{array}
$$

NLO

$$
-2\left(\boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)+\frac{1}{\epsilon}\right)=\mathcal{D}^{(1)}
$$

$$
\begin{gathered}
\text { Expand in } a_{s} \\
\downarrow \\
. .+a_{s}^{2}\left(\Gamma_{2} L+\gamma^{(2)}\right)=. .+2 a_{s}^{2}\left(\mathcal{D}^{(2)}-2 \beta_{0}\left(L^{2}+\zeta_{2}\right)\right)
\end{gathered}
$$

We found 2-loop rapidity anomalous dimension

$$
\mathcal{D}_{L=0}^{(2)}=\left(\frac{404}{27}-14 \zeta_{3}\right) C_{A}-\frac{112}{27} \frac{N_{f}}{2}
$$

TMD rapidity anomalous dimension

- $N=2$, no matrix structure,

$$
\boldsymbol{B}=\frac{b^{2}}{4}, L=\ln \left(\frac{\boldsymbol{B} \mu^{2}}{e^{-2 \gamma_{E}}}\right) \leftrightarrow \ln \left(\frac{v_{12} \mu^{2}}{\nu^{2}}\right)
$$

$$
\begin{aligned}
\gamma_{s}^{(1)}= & L+0 \\
\gamma_{s}^{(2)}= & {\left[\left(\frac{67}{9}-2 \zeta_{2}\right) C_{A}-\frac{20}{18} N_{f}\right] L+} \\
& \left(28 \zeta_{3}+\ldots\right) C_{A}+\left(\frac{112}{27}-\frac{4}{3} \zeta_{2}\right) N_{f} \\
\gamma_{s}^{(3)}= & {\left[\frac{245}{3} C_{A}^{2}+\ldots\right] L+} \\
& +\left(-192 \zeta_{5} C_{A}^{2}+\ldots+\frac{2080}{729} N_{f}^{2}\right)
\end{aligned}
$$

NLO

$$
-2\left(\boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)+\frac{1}{\epsilon}\right)=\mathcal{D}^{(1)}
$$

$$
\begin{array}{r}
\mathrm{N}^{2} \mathrm{LO} \boldsymbol{B}^{2 \epsilon} \Gamma^{2}(-\epsilon)\left(C_{A}\left(2 \psi_{-2 \epsilon}-2 \psi_{-\epsilon}+\psi_{\epsilon}+\gamma_{E}\right)=\mathcal{D}^{(2)}\right. \\
\left.+\frac{1-\epsilon}{(1-2 \epsilon)(3-2 \epsilon)}\left(\frac{3(4-3 \epsilon)}{2 \epsilon} C_{A}-N_{f}\right)\right) \\
+\boldsymbol{B}^{\epsilon} \frac{\Gamma(-\epsilon)}{\epsilon} \beta_{0}+\frac{\beta_{0}}{2 \epsilon^{2}}-\frac{\Gamma_{1}}{2 \epsilon} \\
\text { [Echevarria,Scimemi, AV, } 1511.05590]
\end{array}
$$

$$
\stackrel{a_{s} \mathcal{D}^{(1)}+a_{s}^{2} \mathcal{D}^{(2)}+a_{s}^{3} ? \mathcal{D}^{(3)}}{ }
$$

$\mathrm{N}^{2} \mathrm{LO}$ Expand in a_{s}
$. .+a_{s}^{3}\left(\Gamma_{3} L+\gamma^{(3)}\right)=. .+2 a_{s}^{2}\left[\mathcal{D}^{(3)}-\frac{2 \beta_{0}^{2}}{3} L^{3}-\left(\frac{\beta_{0} \Gamma_{1}}{2}+\beta_{1}\right) L^{2}+\beta_{0}\left(\gamma_{1}-2 \beta_{0} \zeta_{2}\right) L\right.$ $\left.-\beta_{0} \Gamma_{1} \frac{\zeta_{2}}{4}-\zeta_{2} \beta_{1}+\frac{2 \beta_{0}^{2}}{3}\left(\zeta_{3}-\frac{82}{9}\right)+26 \beta_{0} C_{A}\left(\zeta_{4}-\frac{8}{27}\right)\right]$

We found 3-loop rapidity anomalous dimension

$$
\begin{aligned}
& \text { We found 3-loop rapidity anomalous dimension } \\
& \mathcal{D}_{L=0}^{(3)}=C_{A}^{2}\left(\frac{297029}{1458}+\frac{88}{3} \zeta_{2} \zeta_{3}+\ldots+96 \zeta_{5}\right)+\ldots+C_{F} N_{f}\left(\frac{-152}{9} \zeta_{3}-8 \zeta_{4}+\frac{1171 \mathbb{R}}{54}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{D}_{L=0}^{(3)}= & -\frac{C_{A}^{2}}{2}\left(\frac{12328}{27} \zeta_{3}-\frac{88}{3} \zeta_{2} \zeta_{3}-192 \zeta_{5}-\frac{297029}{729}+\frac{6392}{81} \zeta_{2}+\frac{154}{3} \zeta_{4}\right) \\
& -\frac{C_{A} N_{f}}{2}\left(-\frac{904}{27} \zeta_{3}+\frac{62626}{729}-\frac{824}{81} \zeta_{2}+\frac{20}{3} \zeta_{4}\right)- \\
& \frac{C_{F} N_{f}}{2}\left(-\frac{304}{9} \zeta_{3}+\frac{1711}{27}-16 \zeta_{4}\right)-\frac{N_{f}^{2}}{2}\left(-\frac{32}{9} \zeta_{3}-\frac{1856}{729}\right)
\end{aligned}
$$

- Coincides with the one calculated directly [Li,Zhu,1604.01404]
- Amazingty but the logarithmic structure of rapidity anomalous dimension also restored

$$
\begin{gathered}
\mu^{2} \frac{d}{d \mu^{2}} \mathcal{D}\left(a_{s}(\mu), \mathbf{b}\right)=\frac{\Gamma_{c u s p}\left(a_{s}(\mu)\right)}{2} \\
\text { vs. } \\
\nu^{2} \frac{d}{d \nu^{2}} \gamma_{s}(\nu, v)=\frac{\Gamma_{c u s p}}{2}
\end{gathered}
$$

UV anomalous dimensions independent on ϵ. UV anomalous dimension of rapidity anomalous dimension also.

General matrix rapidity anomalous dimension

- The "matrix" soft anomalous dimension is know up to NNNLO (3-loop), where "quadrapole" terms appear [Almelid,Duhr, Gardi,1507.00047]
- Using the same trick we restore the rapidity anomalous dimension for the most general case

quadrapole, starts at a_{s}^{3}
$\tilde{\mathcal{F}}\left(b_{i}, b_{j}, b_{k}, b_{l}\right)=a_{s}^{3} \mathcal{F}\left(\rho_{i k j l}, \rho_{i l j k}\right)+\mathcal{O}\left(a_{s}^{4}\right), \quad \tilde{C}\left(b_{i}, b_{j}, b_{k}\right)=a_{s}^{3}\left(-\zeta_{2} \zeta_{3}-\zeta_{5} / 2\right)+\mathcal{O}\left(a_{s}^{4}\right)$,
- $\rho_{i j k l}=\frac{b_{i j} b_{k l}}{b_{i k} b_{j l}}$, quadrapole part is conformal invariant at LO.
- 2-loop result coincides with one presented here or in [AV,1608.04920]
- Probably would be never used practically....

Rapidity renormalization theorem (weak)

- Any matrix element build of operators $\boldsymbol{\Xi}$ and other finite operators, which do not overlap under conformal-stereographic projection, has non-overlapping rapidity divergences related to every $\boldsymbol{\Xi}$.
- The non-overlapping rapidity divergences can be removed by multiplication of every $\boldsymbol{\Xi}$ by rapidity-renormalization matrix \mathbf{R}.
- Hold in conformal field theory and QCD
- Rapidity renormalization introduces rapidity scaling parameter ζ and R-RGE (CSS equation for TMD)
- Similar statement in TMD case ($\mathrm{N}=2$), without proof, has been suggested in [Chiu,Jain,Neil,Rothstein,1202.0814]

Sketch of proof

- Theorem holds in conformal theory, due to conformal map of divergences.
- The power counting of rapidity divergences is independent on ϵ, they are " 2 D ". $d=2+(d-2)$.
- The relations between diagrams are also independent on ϵ, due to Ward identities.
- In QCD theorem holds at ϵ^{*}
- Thus, it hold at any ϵ.

Consequences (1)

Rapidity factorization
E.g. TMD factorization

- There is rapidity-renormalization scheme dependence.
- The common choice $\varrho\left(\zeta_{+}, \zeta_{-}\right)=1(R=\exp (-A / 2 \ln \delta-B / 2)$ see slide 8$)$ E.g. double-Drell-Yan

$$
\frac{d \sigma}{d X} \sim \int H_{1}\left(Q_{1}^{2}\right) H_{2}\left(Q_{2}^{2}\right) \underbrace{\mathbf{F}_{h 1}\left(z_{1}, b\right) \overbrace{\mathbf{R}\left(\zeta_{+}\right)}^{\mathbf{R}^{-1}\left(\zeta_{+}\right)})}_{\begin{array}{c}
\mathbf{F}\left(z, b, \zeta_{+}\right) \\
\text {finite DPD }
\end{array}} \underbrace{=1}_{\begin{array}{c}
\varrho\left(\zeta_{+}, \zeta_{-}\right) \\
\text {finite }
\end{array}}(b) \overbrace{\mathbf{R}\left(\zeta_{-}\right)}^{\underbrace{=1}_{\underbrace{\mathbf{R}^{-1}\left(\zeta_{-}\right)}_{\begin{array}{c}
\mathbf{F} \\
\text { finite DPD }
\end{array}}} \overline{\mathbf{F}}_{h 2}\left(z_{2}, b\right)}
$$

- It is possible to choose $\varrho\left(\zeta_{+}, \zeta_{-}\right)=1$ at NNLO

Consequences (2)

Summation prescriptions

- The non-perturbative part associated with renormalons can be also factorized. [Scimemi,AV, 1609.06047]
- "Renormalon evaporation"
\mathcal{D} has renormalon singularities $\longrightarrow \mathcal{D}\left(\epsilon^{*}\right)$ has not renormalon singularities
- Can be used as a summation prescription.

Absence of "naive" TMD factorization at higher orders

- TMDs of higher dynamical twist,e.g.

$$
e(x, \mathbf{b}) \simeq \int d \xi \bar{q}_{i}(\xi+\mathbf{b}) \ldots q_{i}(0)
$$

have overlapping rapidity singularities (from the "small" component of quark field).

- Can not be removed by the same procedure, (or soft factor) [I.Scimemi,AV,to be publ.]
- Either non-factorizable, either factorization has different form (several soft factors?)

Many others! (not studied)

Conclusion

- The rapidity divergences are alike UV divergences
- Both can be connected within the conformal field theory
- Using the fact that QCD restores conformal invariance at ϵ^{*} we can match conformal statement to QCD order by order

$$
\boldsymbol{\gamma}_{s}(\{v\})=2 \mathbf{D}\left(\{\mathbf{b}\}, \epsilon^{*}\right)
$$

- It can be checked up to three-loop order (!) for $\mathrm{N}=2$ case (TMD)
- It can be checked up to two-loop order for general case
- Leads to prediction of three-loop general rapidity anomalous dimension

$$
\boldsymbol{\Xi}^{\text {rap.finite }}(\{\mathbf{b}\})=\boldsymbol{\Xi}(\{\mathbf{b}\}) \mathbf{R}(\{\mathbf{b}\})
$$

- Rapidity renormalization theorem (in weak form) is formulated
- Multiple consequences!

