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This talk is about very recent achievements.

I will talk about several seemly di�erent processes. I will try to separate statements clearly,
ask questions!

Outline of talk

State of problem: soft factors and rapidity divergences

Example 1: Soft factor and rapidity decomposition for TMD factorization

Example 2: Soft factor and rapidity decomposition for Double-Drell-Yan
([AV,1608.04920])

Soft factors for multi-parton scattering, and multi-jet production

Soft/rapidity correspondence and its consequences ([AV,1610.05791])

Rapidity renormalization theorem and its consequences
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General structure of the factorization theorems

The modern factorization theorems have the following general structure

dσ

dX︸︷︷︸
cross−X

= H︸︷︷︸
Hard part

perturbative

× f1 ⊗ ...⊗ J2︸ ︷︷ ︸
Parton distributions
jet-functions, etc
Non-pertrubative

universal

× S︸︷︷︸
Soft factor(s)
perturbative ?

+ Some power
suppressed terms

This is typical outcome of SCET

For many interesting cases the individual terms in the product are singular, and requires
rede�nition/refactorization

In general, the factorization task is hidden in soft factors, (they mix the singularities of
di�erent �eld modes)
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TMD factorization

TMD factorization (Q2 � q2
T ) gives us the following expression

dσ

dQdy d2qT
∼
∫
d4x eiqx

∑
X

〈h1|Jµ(x)|X;h2〉〈X;h2|Jν(0)|h1〉

dσ

dQdy d2qT
∼
∫
d2bT e

−i(qb)TH(Q2) Φh1(z1, bT )S(bT )∆h2
(z2, bT ) + Y

TMD factorization

TMD PDF (singular)

TMD FF (singular)

TMD soft factor

power suppressed
terms

(very singular)

All components of factorization formula
contain rapidity divergences.

Within soft factor rapidity divergencs
entangle PDF and FF
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

Light-like vectors:

n2 = n̄2 = 0, (n · n̄) = 1

Wilson line (ray)

Φv(x) = P exp

(
ig

∫ ∞
0

dσvµAAµ (vσ + x)TA
)

Multiple divergences!
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

∫
dxdy D(x− y)

=

∫ ∞
0

dx+

∫ ∞
0

dy−
1

x+y−

=

∫ ∞
0

dx+

x+

∫ ∞
0

dy−

y−

= (UV + IR) (UV + IR)

Some people set it to zero.
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

∫
dxdy D(x− y)

=

∫ ∞
0

dx+

∫ ∞
0

dy−
1

(2x+y− + b2
T )

= IR at x, y →∞

However, it exactly cancels IR from the previous
diagram

Proved at all orders,
e.g.[Echevarria,Scimemi,AV,1511.05590]
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

∫
dxdy D(x− y)

=

∫ ∞
0

dx+

∫ ∞
0

dy−
1

(2x+y− + b2
T )

= rap. div. at lim
λ→0
{x = λ, y = λ−1}

Rapidity divergence is a special kind of
divergences, UV& IR
Does not cancel.
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δ-regularization + dimension regularization(ε > 0)

P exp

(
−ig

∫ ∞
0

dσnµAµ(nσ)

)
→ P exp

(
−ig

∫ ∞
0

dσnµAµ(nσ)e−δσ
)

Nice, and continent composition of regularizations, that clear separate divergences.

=

∫ ∞
0

dx+

∫ ∞
0

dy−
e−δ

+y−e−δ
−x+

(2x+y− + b2
T )1−ε

x+ → zL, y− → L/z

In this calculation scheme every divergece takes particular form

(
b2

4

)ε (
ln

(
δ+δ−

b2e2γE

4

)
− ψ(−ε)− γE

)
+
(
δ+δ−

)−ε
Γ2(−ε)

Rapidity divergences happen only in one sector of diagram and independent on another

The rules of counting the rapidity logarithms ln(δ+δ−) are very simple.
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Sub-graph contains rapidity divergence if gluon can be radiated from cusp to
in�nity.

Count all divergent sub-graphs and remove them

Repeat

Just like like UV divergences! (not accidental!)

Examples of high degree divergences

ln2 δ+δ− ln2 δ+δ− ln2 δ+δ− ln3 δ+δ−
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Typical expression

Generally (say at NNLO) one expects the following form (�nite ε, δ → 0)

S[2] =

IR︷ ︸︸ ︷
A1δδδ
−2ε +A2δδδ

−εBBBε +BBB2ε
(
A3ln2(δδδB)︸ ︷︷ ︸

cancel in sum of diagram

+A4ln(δδδB) +A5

)

Terms ∼ (δδδ)−ε cancel exactly at all orders (proved!)

A3 cancels due to Ward identity (alike leading UV pole for cusp)(what about NNNLO?)

The most important property of SF is that its logarithm is linear in ln(δ+δ−)(proved?)

S(bT ) = exp
(
A(bT , ε) ln(δ+δ−) +B(bT , ε)

)
It allows to split rapidity divergences and de�ne individual TMDs.
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exp(A ln(δ+δ−) +B) = exp

(
A

2
ln((δ+)2ζ) +

B

2

)
exp

(
A

2
ln((δ−)2ζ−1) +

B

2

)

dσ ∼
∫
d2bT e

−i(qb)TH(Q2) Φh1(z1, bT )S(bT )∆h2
(z2, bT ) + Y

dσ ∼
∫
d2bT e

−i(qb)TH(Q2) F (z1, bT ; ζ+) D(z2, bT ; ζ−) + Y

spliting rapidity singularities
S(bT )→

√
S(bT ; ζ+)

√
S(bT ; ζ−)

TMD FF√
S∆h2

(regular)

TMD PDF√
SΦh1

(regular)

The extra "factorization" introduces
extra scale ζ.

And corresponded evolution equation

ζ
d

dζ
F =

A

2
F = −DF

Rapidity anomalous dimension
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The factorization of rapidity singularities in the TMD case can be shown indirectly at
b→ 0, using collinear factorization for (integrated) DY and symmetry arguments.

Checked at NNLO (two-loops)
[Echevarria,Scimemi,AV,1511.05590],[Lübbert,Oredsson,Stahlhofen,1602.01829],
[Li,Neill,Zhu,1604.00392]

The direct all-order proof is absent (but will be presented here.).

Nothing is known about large (�nite) b (however, leading renormalon part also factorizes
[Scimemi,AV,1609.06047]).

Let me present another, less practical, but more general example.

Double-Drell-Yan scattering
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pictures from [1510.08696]

Double Drell-Yan scattering

Experimental status is doubtful

Factorization is proved (in the weak form)
[Diehl,et al,1510.08696]

In many aspects similar to TMD factorization
(SCET II)

The same problem of rapidity factorization

dσ

dX
∼
∫

[dbT e
−i(qb)T ]H1(Q2

1)H2(Q2
2) FAh1(z1,2, b1,2,3,4)SAB(b1,2,3,4)F̄Bh2(z1,2, b1,2,3,4) + Y

DPD (singular)

DPD soft factor

power suppressed
terms

(very singular)

Structure is similar to TMD Drell-Yan
but now it contains

COLOR
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Color structure makes a lot of di�erence

FAh1S
ABF̄Bh2

singlets−−−−−→
(
F1, F8

)( S11 S18

S81 S88

)(
F̄1

F̄8

)

Soft-factors Sij are sum of Wilson loops and double Wilson loops (all possible
connections).

Soft-factors non-zero even in the integrated case.
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Evaluation at NNLO [AV,1608.04920]

Brute force evaluation would lead a lot of (similar) diagrams.

The better way is to compute the generating function [AV, 1406.6253, 1501.03316]

All non-trivial three-Wilson line interactions cancel!

The �nal result expresses exactly via TMD soft factor only!

TMD SF : lnSTMD = σ(b)

Single loop SF : lnS[4] = σ(b12)−σ(b13)+σ(b14)+σ(b23)−σ(b24)+σ(b34)

+
CA
4CF

(σ(b13)−σ(b14)−σ(b23)+σ(b24))(σ(b12)−σ(b13)−σ(b24)+σ(b34))

Double loop SF : lnS[1] = σ(b14)+σ(b23)+ 1
2

(
CA
4CF

−1
)
(σ(b12)−σ(b13)−σ(b24)+σ(b34))2

This structure is independent on regularization procedure!
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REMINDER: TMD factorization

STMD = eσ(b) = eσ
+(b)eσ

−(b), σ± =
A

2
ln((δ+)2ζ±1) +

B

2

Matrix factorization of rapidity divergences

Using the decomposition above, inserting it into DPD SF we obtain matrix relation

SDPD = sT (ln(δ+)) · s(ln(δ−))

s = exp

[(
A11(b1,2,3,4) A18(b1,2,3,4)
A81(b1,2,3,4) A88(b1,2,3,4)

)
ln(δ) +

(
B11(b1,2,3,4) B18(b1,2,3,4)
B81(b1,2,3,4) B88(b1,2,3,4)

)]
Aij and Bij are rather complicated non-linear compositions of TMD's A and B
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Finalizing DPD factorization

dσ

dX
∼
∫

[dbT e
−i(qb)T ]H1(Q2

1)H2(Q2
2)
(
F1, F8

)( S11 S18

S81 S88

)(
F̄1

F̄8

)
+ Y

dσ

dX
∼
∫

[dbT e
−i(qb)T ] e−i(qb)TH1(Q2

1)H2(Q2
2) F (z1,2, b1,2,3,4; ζ+)F̄ (z1,2, b1,2,3,4; ζ−) + Y

spliting rapidity singularities
S(b1,2,3,4)→ sT (b1,2,3,4; ζ+)s(b1,2,3,4; ζ−)

DPD
sFh2

(regular)

DPD(
sFh1

)T
(regular)

Matrix rapidity evolution

dF (z1,2,b1,2,3,4; ζ, µ)

d ln ζ
= −F (z1,2,b1,2,3,4; ζ, µ)D(b1,2,3,4, µ)

where D is matrix build (linearly) of TMD rapidity anomalous dimensions. E.g.

D18 =
D(b12)−D(b13)−D(b24) +D(b34)√

N2
c − 1
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Let's look at multi-parton scattering

Just as double-parton, but multi..(four WL's → arbitrary number WL's)

Factorization can be/is proven [Diehl, et al,1510.08696,1111.0910]

Too many color-singlets, better to work with explicit color indices (color-multi-matrix)

Σ(a1...aN );(d1...dN )(b1, ...,bN ) = Σ(b1,..,N )

Result at NNLO is amazingly simple

Σ(b1,..,N ) = exp

−∑
i<j

TAi TAj σ(bij) +O(a3
s)


TAi TAj = "dipole"

O(a3
s) contains also "color-multipole" terms

Rapidity factorization for dipole part is
straightforward (assuming TMD factorization)
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Main question

Can rapidity factorization be proven at all orders?

Main lessons

Rapidity divergences characterize interaction of origin with in�nity. Do not depend on
the rest!

Has very similar (topologically) structure with UV divergences.

Hint

The color dependent expression reminds us something.... Multi-particle production!

END OF INTRODUCTION

A.Vladimirov rAD/sAD correspondence February 4, 2017 17 / 35



Main question

Can rapidity factorization be proven at all orders?

Main lessons

Rapidity divergences characterize interaction of origin with in�nity. Do not depend on
the rest!

Has very similar (topologically) structure with UV divergences.

Hint

The color dependent expression reminds us something.... Multi-particle production!

END OF INTRODUCTION

A.Vladimirov rAD/sAD correspondence February 4, 2017 17 / 35



Multi-jet production

Jet 2

Soft

Soft

Jet 1

Pa Pb

Jet b Jet a

picture from
[Stewart,Tackmann,Waalewijn,0910.0467]

dσ

dX
= HIJfA ⊗ fB ⊗ J1 ⊗ J2 S

JI

Hard part: pertrubative

dσ

dX
= HIJ

︷ ︸︸ ︷
fA ⊗ fB ⊗ J1 ⊗ J2︸ ︷︷ ︸ SJI
Parton distributions

f ∼ 〈h|q̄[Wilson lines]q|h〉

Jet functions

J ∼ 〈0|q|XJ 〉〈XJ |q̄|0〉
Soft factor

The details of de�nition for soft factors di�ers from process to process.
Generally: S ∼ 〈0|[[Wilson lines]|0〉
The soft factor can be product of soft factors

Soft factors also color matrix (but coupled to hard part).
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Structure of N -jet soft factor

S{ad}({v}) =
∑
X

wXΠ
†{ac}
X ({v})Π{cd}X ({v})

Π
{cd}
X ({v}) = 〈X|T [Φc1d1

v1
(0)...Φ

cNdN
vN (0)]|0〉

Φv(x) = P exp

(
ig

∫ ∞
0

dσvµAAµ (vσ + x)TA
)

Soft factor

Wilson "ray"
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Structure of generic soft factor

Depending on wX soft factors can have very di�erent structure

Such structure of soft factor appears in many places: multi-jet product, event shapes,
hard-collinear factorization and Sudakov factorization, threshold resummation.

In the most popular con�gurations the soft factor (or its parts) have been evaluated up
to N3LO

In the following I consider only v2
i = 0 (massless partons)
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Soft anomalous dimension

With the proper choice of wX the multi-jet soft factor is IR �nite.

UV divergences are renormalized by the appropriate matrix

Sren({v}) = Z†({v})S({v})Z({v})

Renormalization factor knows only about Π

Sren({v}) =
∑
X

wXΠ†renX ({v})Πren
X ({v})

Πren
X ({v}) = Πren

X ({v})Z({v})

Individually Π is horrible object
Not gauge invariant
IR singular
Dependent on X

However UV factor Z is well-de�ned
Gauge invariant
Independent on X
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The RG anomalous dimension for operator Π is called "soft anomalous dimension"

µ2 d

dµ2
Π({v}) = Π({v})γs({v})

The soft anomalous dimension is subject of intensive studies

It is known up to 3-loops (4-loops in N = 4 SYM)

It is conformally invariant (rescaling of the vectors {v})
It has structure (dipole part)

γs({v}) = −
∑
i<j

TAi TAj γ̃(vi · vj) + ...

Compare with the rapidity anomalous dimension (dipole part)

D({b}) = −
∑
i<j

TAi TAj D((bi − bj)2) + ...
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Rewriting multi-parton scattering soft factor

Σ{ad}({b}) = 〈0|T [
(

Φa1c1
−n̄ Φ†c1d1

−n

)
(b1)...

(
Φ
aN cN
−n̄ Φ

†cNdN
−n

)
(bN )]|0〉

Σ({b}) =
∑
X

w̃XΞ†n̄,X({b})Ξn,X({b})

Ξ
{cd}
n,X ({b}) = 〈X|T [Φ†c1d1

−n (b1)...Φ
†cNdN
n (bN )]|0〉

MPS Soft factor

Unnatural act

In many aspects Ξ is similar to Π

Individually Ξ is horrible object
Not gauge invariant
IR singular
End-point singularities
Dependent on X

However it is as horrible as Π
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Conformal-Stereographic transformation

C : {x+, x−,xT } −−−−→
{
−

1

2x+
, x− −

x2
T

2x+
,

xT√
2x+

}

∞-sphere transforms to the transverse plane (at origin)

0 transforms to the transverse plane (at −∞n)
Scalar products 2(vi · vj) transforms to (bi − bj)

2
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Conformal-Stereographic transformation

CΦcdv (0) = Φ†cd−n

(
vT√
2v+

)

ΠX=0 ({v}) −−−−→ ΞX=0 ({b})

UV divergences of Π map onto the rapidity divergences Ξ

Rapidity divergent part of Ξ is gauge invariant and independent on X (like UV of Π)
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In conformal �eld theory

ΠX({v})Z({v}) C−−−−→ ΞX({b})R({b})

In conformal �eld theory rapidity divergences renormalizable (for every factor Ξ).

R can be obtained from Z (by some transformation of regularizations)

UV RGE: µ2 d

dµ2
ΠX = ΠXγγγs

C−−−−→ ζ
d

dζ
ΞX = 2ΞXD :Rap. RGE

Since anomalous dimensions independent on regularization we have simple relation

γγγs({v}) = 2D({b})
Indeed, such equality has been
recently observed at NNNLO

in N = 4 SYM
[Li,Zhu,1604.01404]
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QCD at critical coupling

Conformal symmetry of QCD is restored at critical coupling a∗

In dimensional regularization

At critical coupling β-function vanish (as = g2/(4π)2)

β(g) = g
(
−ε− asβ0 − a2

sβ1 − ...
)
,

Equation β(g∗) = 0 de�nes the value of a∗s(ε) or equivalently de�nes the number of
dimensions in which QCD critical

β(ε∗) = 0 −−−−→ ε∗ = −asβ0 − a2
sβ1 − ...

In MS-like schemes UV anomalous dimension is independent on de�nition of ε.

UV anomalous dimensions are conformal invariant

[Vasiliev; 90's]
for modern applications see e.g.

[Braun,Manashov,1306,5644]
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Soft/rapidity anomalous dimension correspondence

UV anomalous dimension independent on ε

Rapidity anomalous dimension does depend on ε

At ε∗ conformal symmetry of QCD is restored

In QCD

γγγs({v}) = 2D({b}, ε∗)

Seems to be absolutely unique relation

Exact relation!

Connects di�erent regimes of QCD

Physical value is D({b}, 0)

→ Lets test it.
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TMD rapidity anomalous dimension

N = 2, no matrix structure, BBB = b2

4
, L = ln

(
BBBµ2

e−2γE

)
↔ ln

(
v12µ

2

ν2

)

γs({v}) = 2D({b}, ε∗)

γ
(1)
s =L+0

γ
(2)
s =[( 67

9
−2ζ2)CA− 20

18
Nf ]L+

(28ζ3+...)CA+( 112
27
− 4

3
ζ2)Nf

γ
(3)
s =[ 245

3
C2
A+...]L+

+(−192ζ5C
2
A+...+ 2080

729
N2
f )

−2(BBBεΓ(−ε)+ 1
ε )=D(1)

BBB2εΓ2(−ε)
(
CA(2ψ−2ε−2ψ−ε+ψε+γE)=D(2)

+ 1−ε
(1−2ε)(3−2ε)

(
3(4−3ε)

2ε
CA−Nf

))
+BBBε

Γ(−ε)
ε

β0+
β0
2ε2
−Γ1

2ε

[Echevarria,Scimemi,AV,1511.05590]

asγ
(1)
s

+ a2
sγ

(2)
s

+ a3
sγ

(3)
s

asD(1)

+ a2
sD(2)

+ a3
s?D(3)

NLO NLO

N2LO

N3LO

N2LO

Expand in as

as

(
ln

(
b2µ2

ν2

)
+ 0

)
= as

(
ln

(
b2µ2

4e−2γE

)
+ 0

)
Obvious relation, QCD is con�rmal at leading order.

ν2 = 4e−2γE

..+ a2
s

(
Γ2L+ γ(2)

)
= ..+ 2a2

s

(
D(2) − 2β0(L2 + ζ2)

)
We found 2-loop rapidity anomalous dimension

D(2)
L=0 =

(
404

27
− 14ζ3

)
CA −

112

27

Nf

2

..+ a3
s

(
Γ3L+ γ(3)

)
= ..+ 2a2

s

[
D(3) − 2β2

0
3
L3 −

(
β0Γ1

2
+ β1

)
L2 + β0(γ1 − 2β0ζ2)L

−β0Γ1
ζ2
4
− ζ2β1 +

2β2
0

3

(
ζ3 − 82

9

)
+ 26β0CA

(
ζ4 − 8

27

) ]
We found 3-loop rapidity anomalous dimension

D(3)
L=0 = C2

A

(
297029

1458
+

88

3
ζ2ζ3 + ...+ 96ζ5

)
+ ...+ CFNf

(
−152

9
ζ3 − 8ζ4 +

11711

54

)
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D(3)
L=0 = −

C2
A

2

(
12328

27
ζ3 −

88

3
ζ2ζ3 − 192ζ5 −

297029

729
+

6392

81
ζ2 +

154

3
ζ4

)
−
CANf

2

(
−

904

27
ζ3 +

62626

729
−

824

81
ζ2 +

20

3
ζ4

)
−

CFNf

2

(
−

304

9
ζ3 +

1711

27
− 16ζ4

)
−
N2
f

2

(
−

32

9
ζ3 −

1856

729

)

Coincides with the one calculated directly [Li,Zhu,1604.01404]

((((((Amazingly but the logarithmic structure of rapidity anomalous dimension also restored

µ2 d

dµ2
D(as(µ),b) =

Γcusp(as(µ))

2

vs.

ν2 d

dν2
γs(ν, v) =

Γcusp

2

UV anomalous dimensions independent on ε. UV anomalous dimension of rapidity
anomalous dimension also.
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General matrix rapidity anomalous dimension

The "matrix" soft anomalous dimension is know up to NNNLO (3-loop), where
"quadrapole" terms appear [Almelid,Duhr,Gardi,1507.00047]

Using the same trick we restore the rapidity anomalous dimension for the most general
case

D({b}) =

dipole = TMD︷ ︸︸ ︷
N∑

16i<j

TAi TAj D(Lij , as) +

fABαfαCD
[ ∑
i,j,k,l

TAi TBj TCk TDl F̃(bi, bj , bk, bl) +
∑
j<k
i 6=j,k

{TAi ,TDi }TBj TCk C̃(bi, bj , bk)
]

︸ ︷︷ ︸
quadrapole, starts at a3

s

+...

F̃(bi, bj , bk, bl) = a3
sF(ρikjl, ρiljk) +O(a4

s), C̃(bi, bj , bk) = a3
s (−ζ2ζ3 − ζ5/2) +O(a4

s),

ρijkl =
bijbkl
bikbjl

, quadrapole part is conformal invariant at LO.

2-loop result coincides with one presented here or in [AV,1608.04920]

Probably would be never used practically....
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Rapidity renormalization theorem (weak)

Any matrix element build of operators Ξ and other �nite operators, which do not
overlap under conformal-stereographic projection, has non-overlapping rapidity
divergences related to every Ξ.

The non-overlapping rapidity divergences can be removed by multiplication of every Ξ
by rapidity-renormalization matrix R.

Hold in conformal �eld theory and QCD

Rapidity renormalization introduces rapidity scaling parameter ζ and R-RGE (CSS
equation for TMD)

Similar statement in TMD case (N=2), without proof, has been suggested in
[Chiu,Jain,Neil,Rothstein,1202.0814]

Sketch of proof

Theorem holds in conformal theory, due to conformal map of divergences.

The power counting of rapidity divergences is independent on ε, they are "2D".
d = 2 + (d− 2).

The relations between diagrams are also independent on ε, due to Ward identities.

In QCD theorem holds at ε∗

Thus, it hold at any ε.
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Consequences (1)

Rapidity factorization

E.g. TMD factorization

dσ

dQdyd2qt
∼
∫
d2be−i(qb)H(Q2)︸ ︷︷ ︸

F (z,b,ζ+)
�nite TMDPDF

Φh1(z1, b)

=1︷ ︸︸ ︷
R(ζ+)︸ ︷︷ ︸

%(ζ+,ζ−)
�nite

R−1(ζ+)S(b)

=1︷ ︸︸ ︷
R(ζ−)︸ ︷︷ ︸

D(z,b,ζ−)
�nite TMDFF

R−1(ζ−) ∆h2(z2, b)

There is rapidity-renormalization scheme dependence.

The common choice %(ζ+, ζ−) = 1 (R = exp(−A/2 ln δ −B/2) see slide 8)

E.g. double-Drell-Yan

dσ

dX
∼
∫
H1(Q2

1)H2(Q2
2)︸ ︷︷ ︸

F(z,b,ζ+)
�nite DPD

Fh1(z1, b)

=1︷ ︸︸ ︷
R(ζ+)︸ ︷︷ ︸

%(ζ+,ζ−)
�nite

R−1(ζ+) Σ(b)

=1︷ ︸︸ ︷
R(ζ−)︸ ︷︷ ︸

F̄(z,b,ζ−)
�nite DPD

R−1(ζ−) F̄h2(z2, b)

It is possible to choose %(ζ+, ζ−) = 1 at NNLO
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Consequences (2)

Summation prescriptions

The non-perturbative part associated with renormalons can be also factorized.
[Scimemi,AV,1609.06047]

"Renormalon evaporation"

D has renormalon singularities −−−−−→ D(ε∗) has not renormalon singularities

Can be used as a summation prescription.

Absence of "naive" TMD factorization at higher orders

TMDs of higher dynamical twist,e.g.

e(x,b) '
∫
dξ q̄i(ξ + b)...qi(0)

have overlapping rapidity singularities (from the "small" component of quark �eld).

Can not be removed by the same procedure, (or soft factor) [I.Scimemi,AV,to be publ.]

Either non-factorizable, either factorization has di�erent form (several soft factors?)

Many others! (not studied)
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Conclusion

The rapidity divergences are alike UV divergences

Both can be connected within the conformal �eld theory

Using the fact that QCD restores conformal invariance at ε∗ we can match conformal
statement to QCD order by order

γγγs({v}) = 2D({b}, ε∗)
It can be checked up to three-loop order (!) for N=2 case (TMD)

It can be checked up to two-loop order for general case

Leads to prediction of three-loop general rapidity anomalous dimension

Ξrap.finite({b}) = Ξ({b})R({b})
Rapidity renormalization theorem (in weak form) is formulated

Multiple consequences!
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