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This talk is about very recent achievements.

I will talk about several seemly different processes. I will try to separate statements clearly,
ask questions!

Outline of talk
o State of problem: soft factors and rapidity divergences
o Example 1: Soft factor and rapidity decomposition for TMD factorization

o Example 2: Soft factor and rapidity decomposition for Double-Drell-Yan
(TAV,1608.04920])

Soft factors for multi-parton scattering, and multi-jet production

Soft /rapidity correspondence and its consequences ([AV,1610.05791])

e Rapidity renormalization theorem and its consequences
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General structure of the factorization theorems

The modern factorization theorems have the following general structure

do

Some power

ax = \}I/ X J1®..®J2 X \S/ + suppressed terms
Hard part Parton distributions  Soft factor(s)
cross—X perturbative jet-functions, etc perturbative 7
Non-pertrubative
universal

o This is typical outcome of SCET

o For many interesting cases the individual terms in the product are singular, and requires
redefinition/refactorization

o In general, the factorization task is hidden in soft factors, (they mix the singularities of
different field modes)
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TMD factorization
TMD factorization (Q? > q%) gives us the following expression J

do ;
—— ~ [ d*z ha|J*(z)| X ; ho)(X; ha|JY (0)|h
Tady g~ | 2 Sl @)X hal @)

MD soft actor

very singu a

~ / by e OTH(Q) By (21,b1) S () Ap, (22, br) Y
éﬂ/er suppressed

terms
TMD FF (singular)

TMD PDF (singular)

do
dQdy d?qr

All components of factorization formula
contain rapidity divergences.
Within soft factor rapidity divergencs
entangle PDF and FF

R
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TMD soft factor

S(br) = (O[Tr (@, (07)®}, (br) @ (br) @1, (01)) 0)

NS Ver: e’
P oo transverse plang
R,

s

Light-like vectors:

2 2

n® =n*=0, (n-n)=1
777777777777 ﬁ'aﬁl%yﬁl?c:/'
L e Wilson line (ray)
P e ’ OT bT %)
7 ®,(z) = Pexp (zg/ dov“Aﬁ(vU + w)TA>
,,,,,,,,,,,,,,,, o

Multiple divergences!

. —— = — = v
P -octransverse plane , QR
P -
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|
TMD soft factor

S(br) = (O[Tt (®,(07)®}, (br)®—n (br)@" ,(07)) 0)

-

/ dedy D(x —vy)

oo . oo 1
transverse < = / dx / dy er—
plane, 0 0 zty

’ _ / % dxt / > dy~
o =t Jo y~
= (UV4IR)(UV +1R)

Some people set it to zero,

%
.
rse plane ,” QR
.
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|
TMD soft factor

S(br) = (O[Tt (®,(07)®}, (br)®—n (br)@" ,(07)) 0)

/ dzdy D(z—vy)

= dx / dy” ——F————5—
R 0 o (efym +b)

IR at =,y — o0

N
Il

However, it exactly cancels IR from the previous

diagram
Proved at all orders,
TN o e.g.[Echevarria,Scimemi,AV,151 590]
K ’ oGtransverse plane , 7 GR
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|
TMD soft factor

S(br) = (O[Tr (@, (07)®}, (br) @ (br) @1, (01)) 0)

o¢ transverse plane”
2

/ dedy D(x —y)

***** fransverse, = dx Ay ————5~
pTa‘n/c/ ’ A A Y (2z+y* + b%)

= rap. div. at /\li_n}lo{x =A\y=2"1}

Rapidity divergence is a special kind of
divergences, UV& IR
Does not cancel.

%
,
e - e
. -octransverse plane , R
< 7
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d-regularization + dimension regularization(e > 0)

o0 oo
Pexp (—ig/ dan”AH(nU)) — Pexp (—ig/ dan”AH(na)ff(S“)
0 0

Nice, and continent composition of regularizations, that clear separate divergences.

/ / a2t 2L, y~ = L/z
/ 5y oo %) 676+y767671+
[ o [T [Pa e
§ \ 0 0 (2zty™ +bz)t~e

In this calculation scheme every divergece takes particular form

(%) (i (576 255 ) ~v-a =) + 675) 129
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d-regularization + dimension regularization(e > 0)

o0 oo
Pexp (—ig/ dan"AH(na)) — Pexp (—ig/ dan”AH(na)e*(S(’)
0 0

Nice, and continent composition of regularizations, that clear separate divergences.

zt 5 2L, y~ = L/z

2LdL Lzt 46 /2)

(b;) (im mfﬁ) (-0~ ) + (6757) T2 (=)

o Rapidity divergences happen only in one sector of diagram and independent on another

o The rules of counting the rapidity logarithms In(616~) are very simple.

v
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o Sub-graph contains rapidity divergence if gluon can be radiated from cusp to
infinity.
o Count all divergent sub-graphs and remove them

o Repeat

Just like like UV divergences! (not accidental!)

Examples of high degree divergences
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o Sub-graph contains rapidity divergence if gluon can be radiated from cusp to
infinity.
o Count all divergent sub-graphs and remove them

o Repeat

Just like like UV divergences! (not accidental!)

Examples of low degree divergences

k %
1
Inéte— Inéts—
w
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Typical expression
Generally (say at NNLO) one expects the following form (finite ¢, § — 0)
IR
S = 41672 4 A,6-<B¢ + B2 (A31n2(53) +A4In(8B) + A5>

cancel in sum of diagram

o Terms ~ (§) ¢ cancel exactly at all orders (proved!)
o Az cancels due to Ward identity (alike leading UV pole for cusp)(what about NNNLO?)

v

The most important property of SF is that its logarithm is linear in In(6+6~)(proved?)

S(br) = exp (A(br,€) In(6767) + B(br, €))

It allows to split rapidity divergences and define individual TMDs.

@
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eXp(Aln(6+57) + B) = exp (g ln((5+)2C) + ?) exp (g ln((57)2C71) + g)

do ~ [ d?br e~ )T H(Q?) ®py(21,b1)S(br) A, (22,b7) +Y

do ~ [ d?bp e~ )T H(Q?) F(21,br;¢t) D(22,br;¢7) +Y

R equation

TMD PDF TMD FF
VS®p, VSA,

(regular) (regular)

The extra "factorization" introduces
o L extra scale (.
/ And corresponded evolution equation

gf F=="F=—
d¢ 2 R
Rapidity anomalous dimension

sit3t Regensburg
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e The factorization of rapidity singularities in the TMD case can be shown indirectly at
b — 0, using collinear factorization for (integrated) DY and symmetry arguments.

o Checked at NNLO (two-loops)
[Echevarria,Scimemi,AV,1511.05590],[Liibbert,Oredsson,Stahlhofen,1602.01829],
[Li,Neill,Zhu,1604.00392]

e The direct all-order proof is absent (but will be presented here.).

Nothing is known about large (finite) b (however, leading renormalon part also factorizes
[Scimemi,AV,1609.06047]).

Let me present another, less practical, but more general example.

Double-Drell-Yan scattering

@
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Double Drell-Yan scattering
o Experimental status is doubtful

o Factorization is proved (in the weak form)
[Diehl,et al,1510.08696]

o In many aspects similar to TMD factorization
(SCET II)

e The same problem of rapidity factorization
pictures from [1510.08696] 4

PD soft actor
very singular)

/[db e T H (Q3)H(Q3) Fi (21,2,b1,2,3 4)SA (b1,2,3,4)Ff% (21,2, b1,2, 34/,)/

power suppressed
terms

DPD (singular)

Structure is similar to TMD Drell-Yan
but now it contains

COLOR eR
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Color structure makes a lot of difference

— singlets Sll 518 Fl
FiﬁSABFigL’(FlvFS)( g8l  g8s8 )( P8 )

o Soft-factors SY are sum of Wilson loops and double Wilson loops (all possible
connections).

o Soft-factors non-zero even in the integrated case.

-ootransverse plang” 4

-Fu--=--- 7

_-ootransverse plang
Sralevern ;

~ fraugverse
plane,
.

trangverse 7
plane,
.

4 -
hT € —
’ 7 -o¢ transverseplane - .
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-
Evaluation at NNLO [AV,1608.04920]

o Brute force evaluation would lead a lot of (similar) diagrams.
o The better way is to compute the generating function [AV, 1406.6253, 1501.03316]

<22> <21> <11> <211> <111>
k 1
= ANAN . !
JL ,\um\/ l/‘,Jl\ LJ Kok i 'JL:,AR \/'\/\/\/\/ ik J/‘LA[JAP\A\/ .
B L B R e Bk s,
T YARANAN g At i el i i o N\Mii i imm\lj

o All non-trivial three-Wilson line interactions cancel!

o The final result expresses exactly via TMD soft factor only!

TMD SF : InSTMP = 5(b)

Single loop SF : InS™ = 6(b12) =0 (b13)+0(b1a)+0(b23)—o(b2s)+o(bsa)

+4%«7‘;?(U(bls)—U(blzl)—U(b23)+U(b24))(‘7(b12)—0(b13)—U(b24)+0(b34))

Double loop SF i In S = o(b11)+a(bas)+1 (54 —1) (0(b12)—o (b1g) —o (baa)+o (bsa))?

o This structure is independent on regularization procedure!

v
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REMINDER: TMD factorization

§TMD _ _a(b) _ eo+(b)ea*(b)7 ot = é 1n((6+)2§i1) + E
2 2 )
Matrix factorization of rapidity divergences
Using the decomposition above, inserting it into DPD SF we obtain matrix relation
SPPD — T (In(st)) - s(In(67))
Al (b1 234) A'®(b1,23.4) B'l(b1,2,34) B'¥(b1,23.4)
— 12,3, 22,3, In(é 12,3, 12,3,
ST [( A8L(b1234) AS¥(b123.4) n(e) + B83l(b1234) B%(b1,23,4)
Al and BY are rather complicated non-linear compositions of TMD’s A and B
v

@
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Finalizing DPD factorization

do » g1l g18 1
EN/[dee (@)1 H1 (QF)H2(Q3) (FlvFS)( g8l  g8s8 )( 78 >+Y

di . . _
é N/[de e T = HIOT Hy (QF) H2(Q3) F(21,2,b1,2,3,4; CT)F (21,2, b1,2,3,4:C7) + Y
DPDT DPD
(thl) sFp,
(regular) (regular)

Matrix rapidity evolution

dF(z1,2,b1,2,3,4; ¢, )
dIn¢

= —F(z1,2,b1,2,.3,4;¢,u)D(b1,2.3,4, 1t)

where D is matrix build (linearly) of TMD rapidity anomalous dimensions. E.g.

_ D(b12) — D(b13) — D(b24) + D(bs4)
- VN2 —1

rAD/sAD correspondence February 4, 2017 15 / 35
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Let’s look at multi-parton scattering

o Just as double-parton, but multi..(four WL’s — arbitrary number WL’s)
e Factorization can be/is proven [Diehl, et al,1510.08696,1111.0910]

e Too many color-singlets, better to work with explicit color indices (color-multi-matrix)

E(al»-»az\f);(dl~-~dz\f)(bl7 b)) =2(b1 N)

SCURIRTCTSE PIAE Result at NNLO is amazingly simple
d,
d,

<4
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Let’s look at multi-parton scattering

o Just as double-parton, but multi..(four WL’s — arbitrary number WL’s)
e Factorization can be/is proven [Diehl, et al,1510.08696,1111.0910]

e Too many color-singlets, better to work with explicit color indices (color-multi-matrix)

E(al»-»az\r)%(dl~-~dz\r)(bl7 b)) =2(b1 N)

SRR Result at NNLO is amazingly simple

(b1, n) =exp | — > T{Tio(biy) + Oad)
i<j

trangverse <
BINSES

AA _ ng;
o T/ TS = "dipole"
o O(a2) contains also "color-multipole" terms

e o Rapidity factorization for dipole part is
straightforward (assuming TMD factorization)

v

-ww'n
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Main question J

o Can rapidity factorization be proven at all orders?

Main lessons

o Rapidity divergences characterize interaction of origin with infinity. Do not depend on
the rest!

o Has very similar (topologically) structure with UV divergences.

Hint
o The color dependent expression reminds us something.... Multi-particle production! J

@
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Main question J

o Can rapidity factorization be proven at all orders?

Main lessons

o Rapidity divergences characterize interaction of origin with infinity. Do not depend on
the rest!

o Has very similar (topologically) structure with UV divergences.

Hint
o The color dependent expression reminds us something.... Multi-particle production! J

END OF INTRODUCTION

@
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|
Multi-jet production

Jet 1

P,= — —= P, d

g
_ glJ T ® Jo S
X H" fAa® fB®J1® J2

Soft
Jet2

picture from
[Stewart,Tackmann,Waalewijn,0910.0467]

@
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|
Multi-jet production

Hard part: pertrubative

&

Wxo,

Jet 1

Parton distributions
f ~ (h|g[Wilson lines|q|h)

P,= k 0= ——=—7, d
b —U:HIJfA®fB®J1®J2SH
dX
~ / \ Soft Jet functions
Jet 2 J ~ {0[q| X 7){X s14/0)

picture from
[Stewart,Tackmann,Waalewijn,0910.0467]

@
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Multi-jet production

Jet 1

Jet2

picture from

[Stewart,Tackmann,Waalewijn,0910.0467]

Hard part: pertrubative

&

&

Wxo,

Parton distributions
f ~ (h|g[Wilson lines|q|h)

do
dX

[J et functions

J ~ {0lq|X 5){X,]4l0)

—
—=H 40501 J §''

e The details of definition for soft factors differs from process to process.
Generally: S ~ (0|[[Wilson lines]|0)

e The soft factor can be product of soft factors

o Soft factors also color matrix (but coupled to hard part).

rAD/sAD correspondence
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Structure of N-jet soft factor

stedt({v}) = Zw I (ohmE™ ({o}) Soft factor
Y ({0}) = (X|T[@5141(0)... 65NN (0)]]0)

o0
Wilson "ray" @®,(x) = Pexp (1g/ dov“Aﬁ(va’ + z)TA>
0

versitit Regensburg
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Structure of generic soft factor
o Depending on wx soft factors can have very different structure

o Such structure of soft factor appears in many places: multi-jet product, event shapes,
hard-collinear factorization and Sudakov factorization, threshold resummation.

e In the most popular configurations the soft factor (or its parts) have been evaluated up
to N3LO

In the following I consider only v? = 0 (massless partons)

Universitit Regensburg
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Soft anomalous dimension

o With the proper choice of wx the multi-jet soft factor is IR finite.

e UV divergences are renormalized by the appropriate matrix

s ({v}) = Z' {v}S{vHZ({v})

Renormalization factor knows only about IT

S ({v}) = > wx T ({o) IR ({v})
X

" ({v}) = " ({vHZ({v})

o Individually II is horrible object
e Not gauge invariant
e IR singular
e Dependent on X
o However UV factor Z is well-defined

o Gauge invariant
e Independent on X

v
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o The RG anomalous dimension for operator IT is called "soft anomalous dimension"

d
u2mﬂ({v}) =T ({v})ys({v})

The soft anomalous dimension is subject of intensive studies
o It is known up to 3-loops (4-loops in N' =4 SYM)
e It is conformally invariant (rescaling of the vectors {v})
o It has structure (dipole part)

ya({o}) = = D TETIF(vi - vy) + ..
i<j

W'R
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o The RG anomalous dimension for operator IT is called "soft anomalous dimension"

— ({v}) = T({v})ys ({v})

The soft anomalous dimension is subject of intensive studies
o It is known up to 3-loops (4-loops in N' =4 SYM)
e It is conformally invariant (rescaling of the vectors {v})
o It has structure (dipole part)

(o)) = = STTAT (v ) + .

1<j

Compare with the rapidity anomalous dimension (dipole part)

D({b}) = — 3 TATAD((bi — b)) + ...

i<J

W'R

Universitit Regensburg
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Rewriting multi-parton scattering soft factor

1ot ({b}) = (O[T](@1 1% ) (ba)... (LN @TN V) (b)]l0) MPS Soft factor

=({b}) = > wxEl (({bhE, x({b})
X

=LY (b)) = (XIT[215 % (b1)... @[ (by)][0)

WiR
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Rewriting multi-parton scattering soft factor
S{edh({b}) = (OIT](@1 1% ) (ba)... (SUE N @TN V) (b )]l0) MPS Soft factor

=({b}) = > wxEL (({b})E, x({b})
X

=19 ({b}) = (X|T[@1 (by)...@fN N (b)) |0)

Unnatural act
In many aspects
o Individually

E is similar to IT
= is horrible object

o Not gauge invariant
o IR singular

o End-point singularities
. . o Dependent on X

trangve:
s

e However it is as horrible as IT

R
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Conformal-Stereographic transformation

1 X% XT

C: {zT,z7,x —_— e ——— T — ——
{ T 2zt 2zt 2zt

“trangverse
planc
-
-

@
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Conformal-Stereographic transformation

1 X2 XT
c: {at,27,x —_— ez - L
{ T} 2zt 22t 2zt

e oco-sphere transforms to the transverse plane (at origin)
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Conformal-Stereographic transformation

1 X% XT

C: {zT,z7,x —_— s, — —
{ T} 2zt 22t 2zt

e oco-sphere transforms to the transverse plane (at origin)

e 0 transforms to the transverse plane (at —oon)

 transverse
plane
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Conformal-Stereographic transformation

1 X% XT

C: {zT,z7,x —_— s, — —
{ T} 2zt 22t 2zt

e oco-sphere transforms to the transverse plane (at origin)

e 0 transforms to the transverse plane (at —oon)

o Scalar products 2(v; - vj) transforms to (b; — b;)?

 transverse
plane
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Conformal-Stereographic transformation

1 X%ﬂ X7

c: {at,27,x —— T — 0, =
{a™ a7, xr} 27+’ 2zt 2zt

e oco-sphere transforms to the transverse plane (at origin)

e 0 transforms to the transverse plane (at —oon)

o Scalar products 2(v; - v;) transforms to (b; — b;)?

\ {ransverse
plane
.
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Conformal-Stereographic transformation

1 X%ﬂ X7

g - T
2z+’ 2zt 2zt

c: {zt 27 ,xp} —— < —

e oco-sphere transforms to the transverse plane (at origin)

e 0 transforms to the transverse plane (at —oon)
2

e Scalar products 2(v; - v;) transforms to (b; —bj)
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Conformal-Stereographic transformation

cact(0) = afed (LT )

Mx—o ({v}) —— Ex—0 ({b})

o UV divergences of IT map onto the rapidity divergences 2

o Rapidity divergent part of = is gauge invariant and independent on X (like UV of IT)

Universitit Regensburg
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In conformal field theory

Iy ({vhZ({v}) —— Ex{bHR({b})

o In conformal field theory rapidity divergences renormalizable (for every factor E).

o R can be obtained from Z (by some transformation of regularizations)

a4

Ex =22xD :Rap. RGE
dC X X P

d
UV RGE: “QdTﬂHX =TIxys —— ¢

v
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In conformal field theory

Iy ({vhZ({v}) —— Ex{bHR({b})

o In conformal field theory rapidity divergences renormalizable (for every factor E).

o R can be obtained from Z (by some transformation of regularizations)

a4

Ex =22xD :Rap. RGE
dC X X P

d
UV RGE: “QdTBHX =TIxys —— ¢

Since anomalous dimensions independent on regularization we have simple relation

vs({v}) = 2D({b})

Indeed, such equality has been
recently observed at NNNLO
in =4 SYM
[Li,Zhu,1604.01404]

V.
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|
QCD at critical coupling

‘ Conformal symmetry of QCD is restored at critical coupling a*

In dimensional regularization

At critical coupling S-function vanish (as = g2/(47)?)
B(g) =g (—e—asPo—a2p1—..),

Equation B(g*) = 0 defines the value of a*(€) or equivalently defines the number of
dimensions in which QCD critical

*

B(e*)=0 —_— e = —asfo — &5,31 — ..

In MS-like schemes UV anomalous dimension is independent on definition of e.

‘ UV anomalous dimensions are conformal invariant ‘

[Vasiliev; 90’s]
for modern applications see e.g.
[Braun,Manashov,1306,5644]

y
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Soft /rapidity anomalous dimension correspondence

e UV anomalous dimension independent on e
o Rapidity anomalous dimension does depend on €

o At €* conformal symmetry of QCD is restored

@
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Soft /rapidity anomalous dimension correspondence

e UV anomalous dimension independent on e
o Rapidity anomalous dimension does depend on €

o At €* conformal symmetry of QCD is restored

In QCD

vs({v}) = 2D({b}, €*)

@ Seems to be absolutely unique relation

o Exact relation!

o Connects different regimes of QCD
e Physical value is D({b}, 0)
— Lets test it.

@
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TMD rapidity anomalous dimension

. b2 Bu2 2
o N = 2, no matrix structure, B=>,L=In (672“7}2 ) < In (”1325‘ )

NLO | NLO -

) asDM)

AsYs
_ *
b =2p(b)e) T
b2/'L2 b2u2
oo (%) +0) = (o (555) +0)
Obvious relation, QCD is confirmal at leading order.

s @
R
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TMD rapidity anomalous dimension

. b2 Bu2 2
o N = 2, no matrix structure, B=>,L=In (672“7}2 ) < In (”1325‘ )

N0 | o @ -o
B =[(8T ~2¢2)Ca— 2O NfIL+
(28¢3+...)Ca+(H2 —4¢a) Ny -

M 4 42,2 asDM) +a27D()

N _——vs({v}) = 2D({b},€")

. +a? (F2L + 7(2)> =..+2d2 (9(2) —2B0(L* + CZ))

We found 2-loop rapidity anomalous dimension

404 112 N
o= (G ~146s) o= -

Universitit Regensburg
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TMD rapidity anomalous dimension

. b2 Bu2 2
o N = 2, no matrix structure, B=>,L=In (672“7}2 ) < In (”1325‘ )

+V=L+0

NLO ~2(B“r(=e)+1)=D (D
B =[(8T —2¢3)Ca— 2O N; L+ B2°T%(—¢) (CA<2¢_2572w_5+we+w):73<2)

NLO
(28¢3+-. )CA+(&**C2) - - R e T 26)(3(4;3€)CA Nf))

( e) B r
+B*¢ Bot+, % — 3k

3
)—[28502 4. )L+
[Echevarria,Scimemi,AV,1511.05590]

+(—192¢sC5 +...+ FEON?)

as78 + a2y + a3V (@D +aiD®) + airD

! ' a({v)) = 2D({b}, e ’

wtad (F3L+’y(3)> = . +2a? [D(3) - @L‘% - (ﬂogr + B ) L? + Bo(y1 — 2B0C2) L
—BoT1 2 — oy + 228 (G5 — B2) + 2660Ca (o — 2]

We found 3-loop rapidity anomalous dimension
(3) o (297029 88 ) (—152 })
D =C — ...+ 96 .. +CpN -8 ———smirsitst Regensburg
L—o A(1458 +3CzC3+ +96¢5 ) + ... + Crp Ny Ca+ 51
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2
@ C2 (12328 88 207029 6392 154
D = -4 — s — 1925 — 2+
L=0 2 ( o7 8T 3 20 Gy T 2T
CaNj [ 904 62626 824 20
2 ( EATT HCHEC“)
CpNy ( 304 1711 N?( 32 1856)
_2 " _1g P B e
2 ( T <4> 2 9%~ a9

o Coincides with the one calculated directly [Li,Zhu,1604.01404|

o Amazi ut the logarithmic structure of rapidity anomalous dimension also restored
d Ceusp(as(p))
2 cusp\Us

——™D(a ,b) = ——~~

b2 5 D(es(1), D) :

vs.
d r
2 cusp
v —=s(v,v) = ——
A2 ¥s (v, v) B

UV anomalous dimensions independent on e. UV anomalous dimension of rapidity
anomalous dimension also.
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General matrix rapidity anomalous dimension
e The "matrix" soft anomalous dimension is know up to NNNLO (3-loop), where
"quadrapole" terms appear [Almelid,Duhr,Gardi,1507.00047]

o Using the same trick we restore the rapidity anomalous dimension for the most general

case
dipole = TMD
N
D({b}) = > T{T/D(Lij,as)+
1<i<y
fABafaCD[ ST TATBTCTP F(biyby by b) + > {Tf,TP}T]BTgé(bi,bj,bk)] T
1,7,k,l i<k

i#j,k

quadrapole, starts at a2

F(bi, by, bi, br) = adFpirji, pijr) + Olas), C(bi,bj, b)) = ad (283 — ¢5/2) + O(ad),

b ;b
® Pijkl = 3. ;cb o quadrapole part is conformal invariant at LO.

e 2-loop result coincides with one presented here or in [AV,1608.04920)]

o Probably would be never used practically....
v
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Rapidity renormalization theorem (weak)

e Any matrix element build of operators = and other finite operators, which do not
overlap under conformal-stereographic projection, has non-overlapping rapidity
divergences related to every =.

o The non-overlapping rapidity divergences can be removed by multiplication of every 2
by rapidity-renormalization matrix R.

o Hold in conformal field theory and QCD

o Rapidity renormalization introduces rapidity scaling parameter ¢ and R-RGE (CSS
equation for TMD)

o Similar statement in TMD case (N=2), without proof, has been suggested in
[Chiu,Jain,Neil,Rothstein,1202.0814]

Sketch of proof
o Theorem holds in conformal theory, due to conformal map of divergences.

o The power counting of rapidity divergences is independent on e, they are "2D".
d=2+(d—2).

o The relations between diagrams are also independent on €, due to Ward identities.
o In QCD theorem holds at €*
o Thus, it hold at any e.

y
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Consequences (1)

Rapidity factorization
E.g. TMD factorization

=1 =1
_do [ g2pe-itad) Q? b “¢y) S0 -1 A b
5 e H(Q)Pn1(21,b) R(C+)R™(C+) S(b) R(C-)R™ (¢ ) Apa(22,b)
dQdyd?q¢
F(z,b,¢4) o(¢4,6-) D(z,b,¢—)
finite TMDPDF finite finite TMDFF

o There is rapidity-renormalization scheme dependence.
e The common choice o({+,(-) =1 (R =exp(—A/2Ind — B/2) see slide 8)
E.g. double-Drell-Yan

=1 =1
do — — —
T~ [ 1@ H@)FM L D REOR N SO RER () Faa(a,b)
F(z,b,(4) o(¢4+,¢-) F(z,b,¢_)
finite DPD finite finite DPD

o It is possible to choose o(¢4+,¢(—) =1 at NNLO
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Consequences (2)

Summation prescriptions

o The non-perturbative part associated with renormalons can be also factorized.
[Scimemi,AV,1609.06047]

e "Renormalon evaporation"

D has renormalon singularities —— D(€*) has not renormalon singularities

o Can be used as a summation prescription.

Absence of "naive" TMD factorization at higher orders

o TMDs of higher dynamical twist,e.g.

e(ab) = [ dE 4,(6+ b).ts (0

have overlapping rapidity singularities (from the "small" component of quark field).
e Can not be removed by the same procedure, (or soft factor) [T.Scimemi,AV,to be publ.]

o Either non-factorizable, either factorization has different form (several soft factors?)

T~
Many others! (not studied)

)
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Conclusion

o The rapidity divergences are alike UV divergences
o Both can be connected within the conformal field theory

o Using the fact that QCD restores conformal invariance at €* we can match conformal
statement to QCD order by order

vs({v}) = 2D({b}, ")

o It can be checked up to three-loop order (!) for N=2 case (TMD)
o It can be checked up to two-loop order for general case

o Leads to prediction of three-loop general rapidity anomalous dimension
Zrer-mite({b}) = Z({b})R({b})

o Rapidity renormalization theorem (in weak form) is formulated

o Multiple consequences!

@

Iniversitit Regensburg
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