Structure of rapidity divergences in soft factors \&

 rapidity renormalization theoremAlexey A. Vladimirov
based on [1707.07606]
Institut für Theoretische Physik
Universität Regensburg
MIT
Oct. 2017

Universitãt Regensburg

General structure of the factorization theorems

The modern factorization theorems have the following general structure

- This is a typical result of field mode separation
- Individual terms in the product are singular, and requires redefinition/refactorization
- The next factorization step is to factorize the divergences in soft factors
- The SF factorization is essential for lower-energy studies (e.g. SIDIS) and for resummation

General structure of the factorization theorems

The modern factorization theorems have the following general structure

- This is a typical result of field mode separation
- Individual terms in the product are singular, and requires redefinition/refactorization
- The next factorization step is to factorize the divergences in soft factors
- The SF factorization is essential for lower-energy studies (e.g. SIDIS) and for resummation

Outline of talk

- Example 1: Soft factor and rapidity decomposition for TMD factorization
- Example 2: Soft factor and rapidity decomposition for Double-Drell-Yan (and multi DY) ([AV,1608.04920])
- Structure of singularities in soft factors
- Proof of renormalization of rapidity divergences using conformal transformation
- Some consequences: factorization for mutiDY, correspondence between SAD and RAD, etc.

Example I: TMD factorization

TMD factorization

TMD factorization $\left(Q^{2} \gg q_{T}^{2}\right)$ gives us the following expression

$$
\frac{d \sigma}{d Q d y d^{2} q_{T}} \sim \int d^{4} x e^{i q x} \sum_{X}\left\langle h_{1}\right| J^{\mu}(x)\left|X ; h_{2}\right\rangle\left\langle X ; h_{2}\right| J^{\nu}(0)\left|h_{1}\right\rangle
$$

$\frac{d \sigma}{d Q d y d^{2} q_{T}} \sim \int_{\text {RG equation }} d^{2} b_{T} e^{-i(q b) T H\left(Q^{2}\right)}$

All components of factorization formula contain rapidity divergences.
Within soft factor rapidity divergencs entangle PDF and FF

TMD soft factor

$$
S\left(\mathbf{b}_{T}\right)=\langle 0| \operatorname{Tr}\left(\mathbf{\Phi}_{n}\left(\mathbf{0}_{T}\right) \boldsymbol{\Phi}_{n}^{\dagger}\left(\mathbf{b}_{T}\right) \mathbf{\Phi}_{-n}\left(\mathbf{b}_{T}\right) \mathbf{\Phi}_{-\bar{n}}^{\dagger}\left(\mathbf{0}_{T}\right)\right)|0\rangle
$$

Light-like vectors:

$$
n^{2}=\bar{n}^{2}=0, \quad(n \cdot \bar{n})=1
$$

Wilson line (ray)

$$
\mathbf{\Phi}_{v}(x)=P \exp \left(i g \int_{0}^{\infty} d \sigma v^{\mu} A_{\mu}^{A}(v \sigma+x) \mathbf{T}^{A}\right)
$$

Multiple divergences!

TMD soft factor

$$
S\left(\mathbf{b}_{T}\right)=\langle 0| \operatorname{Tr}\left(\boldsymbol{\Phi}_{n}\left(\mathbf{0}_{T}\right) \boldsymbol{\Phi}_{n}^{\dagger}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-n}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\left(\mathbf{0}_{T}\right)\right)|0\rangle
$$

$$
\begin{aligned}
\int d x d y & D(x-y) \\
& =\quad \int_{0}^{\infty} d x^{+} \int_{0}^{\infty} d y^{-} \frac{1}{x^{+} y^{-}} \\
& =\int_{0}^{\infty} \frac{d x^{+}}{x^{+}} \int_{0}^{\infty} \frac{d y^{-}}{y^{-}} \\
& =(\mathrm{UV}+\mathrm{IR})(\mathrm{UV}+\mathrm{IR})
\end{aligned}
$$

Some people set it to zero.

TMD soft factor

TMD soft factor

$$
S\left(\mathbf{b}_{T}\right)=\langle 0| \operatorname{Tr}\left(\boldsymbol{\Phi}_{n}\left(\mathbf{0}_{T}\right) \boldsymbol{\Phi}_{n}^{\dagger}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-n}\left(\mathbf{b}_{T}\right) \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\left(\mathbf{0}_{T}\right)\right)|0\rangle
$$

$$
\begin{array}{rl}
d x d y & D(x-y) \\
= & \int_{0}^{\infty} d x^{+} \int_{0}^{\infty} d y^{-} \frac{1}{\left(2 x^{+} y^{-}+\mathbf{b}_{T}^{2}\right)} \\
= & \text { rap. div. at } \lim _{\lambda \rightarrow 0}\left\{x=\lambda, y=\lambda^{-1}\right\}
\end{array}
$$

Rapidity divergence is a special kind of divergences, UV\& IR

Does not cancel.
δ-regularization + dimension regularization $(\epsilon>0)$

$$
P \exp \left(-i g \int_{0}^{\infty} d \sigma n^{\mu} A_{\mu}(n \sigma)\right) \rightarrow P \exp \left(-i g \int_{0}^{\infty} d \sigma n^{\mu} A_{\mu}(n \sigma) e^{-\delta \sigma}\right)
$$

Nice, and continent composition of regularizations, that clear separate divergences.

In this calculation scheme every divergece takes particular form

$$
\left(\frac{\mathbf{b}^{2}}{4}\right)^{\epsilon}\left(\ln \left(\delta^{+} \delta^{-} \frac{\mathbf{b}^{2} e^{2 \gamma_{E}}}{4}\right)-\psi(-\epsilon)-\gamma_{E}\right)+\left(\delta^{+} \delta^{-}\right)^{-\epsilon} \Gamma^{2}(-\epsilon)
$$

δ-regularization + dimension regularization $(\epsilon>0)$

$$
P \exp \left(-i g \int_{0}^{\infty} d \sigma n^{\mu} A_{\mu}(n \sigma)\right) \rightarrow P \exp \left(-i g \int_{0}^{\infty} d \sigma n^{\mu} A_{\mu}(n \sigma) e^{-\delta \sigma}\right)
$$

Nice, and continent composition of regularizations, that clear separate divergences.

Universitãt Regensburg

Typical expression

Generally (say at NNLO) one expects the following form (finite $\epsilon, \delta \rightarrow 0$)

$$
S^{[2]}=\underbrace{\overbrace{A_{1} \boldsymbol{\delta}^{-2 \epsilon}+A_{2} \boldsymbol{\delta}^{-\epsilon} \boldsymbol{B}^{\epsilon}}^{\mathrm{IR}}+\boldsymbol{B}^{2 \epsilon}\left(A_{3} \ln ^{2}(\boldsymbol{\delta} B)\right.}_{\text {cancel in sum of diagram }}+A_{4} \ln (\boldsymbol{\delta} B)+A_{5})
$$

- Terms $\sim(\boldsymbol{\delta})^{-\epsilon}$ cancel exactly at all orders (proved!) see e.g.[AV;1707.07606,app.A]
- A_{3} cancels due to Ward identity (alike leading UV pole for cusp)(what about NNNLO?)

The most important property of SF is that its logarithm is linear in $\ln \left(\delta^{+} \delta^{-}\right)$

$$
S\left(b_{T}\right)=\exp \left(A\left(b_{T}, \epsilon\right) \ln \left(\delta^{+} \delta^{-}\right)+B\left(b_{T}, \epsilon\right)\right)
$$

It allows to split rapidity divergences and define individual TMDs.
Important note: the structure is independent on ϵ

$$
\exp \left(A \ln \left(\delta^{+} \delta^{-}\right)+B\right)=\exp \left(\frac{A}{2} \ln \left(\left(\delta^{+}\right)^{2} \zeta\right)+\frac{B}{2}\right) \exp \left(\frac{A}{2} \ln \left(\left(\delta^{-}\right)^{2} \zeta^{-1}\right)+\frac{B}{2}\right)
$$

$$
\begin{aligned}
& d \sigma \sim \int d^{2} b_{T} e^{-i(q b)_{T}} H\left(Q^{2}\right) \quad \Phi_{h 1}\left(z_{1}, b_{T}\right) S\left(b_{T}\right) \Delta_{h_{2}}\left(z_{2}, b_{T}\right)+Y \\
& \text { T } \\
& \text { spliting rapidity singularities } \\
& S\left(b_{T}\right) \rightarrow \sqrt{S\left(b_{T} ; \zeta^{+}\right)} \sqrt{S\left(b_{T} ; \zeta^{-}\right)} \\
& d \sigma \sim \int d^{2} b_{T} e^{-i(q b)_{T}} H\left(Q^{2}\right) F\left(z_{1}, b_{T} ; \zeta^{+}\right) D\left(z_{2}, b_{T} ; \zeta^{-}\right)+Y
\end{aligned}
$$

The extra "factorization" introduces extra scale ζ.
And corresponded evolution equation

$$
\zeta \frac{d}{d \zeta} F=\frac{A}{2} F=-\mathcal{D} F
$$

Rapidity anomalous dimension (RAD)

TMD evolution

TMD evolution is evolution in two-dimension plane

$$
\binom{\frac{d}{d \ln \mu^{2}}}{\frac{d}{d \ln \zeta}} F(x, b)=\binom{\gamma_{F}}{-\mathcal{D}} F(x, b) \quad=\binom{\text { UV part }}{\text { rap.part }} F(x, b)
$$

Nowadays (at NNLO) the largest error comes from the evolution [I.Scimemi, AV, 1706.01473]

TMD evolution

TMD evolution is evolution in two-dimension plane

$$
\binom{\frac{d}{d \ln \mu^{2}}}{\frac{d}{d \ln \zeta}} F(x, b)=\binom{\gamma_{F}}{-\mathcal{D}} F(x, b) \quad=\binom{\text { UV part }}{\text { rap.part }} F(x, b)
$$

Nowadays (at NNLO) the largest error comes from the evolution [I.Scimemi,AV,1706.01473]

High-energy example: ATLAS 8 TeV (best precision)

Universităt Regensburg

TMD evolution

TMD evolution is evolution in two-dimension plane

$$
\binom{\frac{d}{d \ln \mu^{2}}}{\frac{d}{d \ln \zeta}} F(x, b)=\binom{\gamma_{F}}{-\mathcal{D}} F(x, b) \quad=\binom{\text { UV part }}{\text { rap.part }} F(x, b)
$$

Nowadays (at NNLO) the largest error comes from the evolution [I.Scimemi,AV,1706.01473]

High-energy example: ATLAS 8 TeV (best precision)

Universitãt Regensburg

TMD evolution

TMD evolution is evolution in two-dimension plane

$$
\binom{\frac{d}{d \ln \mu^{2}}}{\frac{d}{d \ln \zeta}} F(x, b)=\binom{\gamma_{F}}{-\mathcal{D}} F(x, b) \quad=\binom{\text { UV part }}{\text { rap.part }} F(x, b)
$$

Nowadays (at NNLO) the largest error comes from the evolution [I.Scimemi,AV,1706.01473]

Low-energy example: E288 $\sqrt{s}=19.4 \mathrm{GeV}, Q=4-5 \mathrm{GeV}$

Universitãt Regensburg

TMD evolution

TMD evolution is evolution in two－dimension plane

$$
\binom{\frac{d}{d \ln \mu^{2}}}{\frac{d}{d \ln \zeta}} F(x, b)=\binom{\gamma_{F}}{-\mathcal{D}} F(x, b) \quad=\binom{\text { UV part }}{\text { rap.part }} F(x, b)
$$

Nowadays（at NNLO）the largest error comes from the evolution［I．Scimemi，AV，1706．01473］

Low－energy example：E288 $\sqrt{s}=19.4 \mathrm{GeV}, Q=4-5 \mathrm{GeV}$

There is no proof of rapidity divergence factorization

- Checked at NNLO (two-loops)
[Echevarria,Scimemi,AV,1511.05590],[Lübbert,Oredsson,Stahlhofen,1602.01829], [Li,Neill,Zhu,1604.00392]
- Nothing is known about large (finite) b (however, leading renormalon part also factorizes [Scimemi,AV, 1609.06047]).

Universitãt Regensburg

There is no proof of rapidity divergence factorization

- Checked at NNLO (two-loops)
[Echevarria,Scimemi,AV,1511.05590],[Lübbert,Oredsson,Stahlhofen,1602.01829], [Li,Neill,Zhu,1604.00392]
- Nothing is known about large (finite) b (however, leading renormalon part also factorizes [Scimemi,AV, 1609.06047]).

Example II: Double-Drell-Yan scattering

pictures from [1510.08696]

Double Drell-Yan scattering

- Experimental status is doubtful
- Collinear part of factorization is proved [Diehl,et al,1510.08696]
- In many aspects similar to TMD factorization
- The same problem of rapidity factorization, but enchanted by matrix structure

Structure is similar to TMD Drell-Yan but now it contains COLOR
The soft factor is a matrix

Color structure makes a lot of difference

$$
F_{h 1}^{A} S^{A B} \bar{F}_{h 2}^{B} \xrightarrow{\text { singlets }}\left(F^{\mathbf{1}}, F^{\mathbf{8}}\right)\left(\begin{array}{cc}
S^{\mathbf{1 1}} & S^{\mathbf{1 8}} \\
S^{\mathbf{8 1}} & S^{\mathbf{8 8}}
\end{array}\right)\binom{\bar{F}^{\mathbf{1}}}{\bar{F}^{\mathbf{8}}}
$$

- Soft-factors $S^{\mathbf{i j}}$ are sum of Wilson loops and double Wilson loops (all possible connections).
- Soft-factors are non-zero even in the integrated case.

Evaluation at NNLO [AV,1608.04920]

- Brute force evaluation would lead a lot of (similar) diagrams.
- The better way is to compute the generating function [AV, 1406.6253, 1501.03316]

- All non-trivial three-Wilson line interactions cancel!
- The final result expresses via TMD soft factor only!

TMD SF : $\ln S^{\mathrm{TMD}}=\sigma(\mathbf{b})$

Single loop SF : $\quad \ln S^{[4]}=\sigma\left(\mathbf{b}_{12}\right)-\sigma\left(\mathbf{b}_{13}\right)+\sigma\left(\mathbf{b}_{14}\right)+\sigma\left(\mathbf{b}_{23}\right)-\sigma\left(\mathbf{b}_{24}\right)+\sigma\left(\mathbf{b}_{34}\right)$

$$
+\frac{C_{A}}{4 C_{F}}\left(\sigma\left(\mathbf{b}_{13}\right)-\sigma\left(\mathbf{b}_{14}\right)-\sigma\left(\mathbf{b}_{23}\right)+\sigma\left(\mathbf{b}_{24}\right)\right)\left(\sigma\left(\mathbf{b}_{12}\right)-\sigma\left(\mathbf{b}_{13}\right)-\sigma\left(\mathbf{b}_{24}\right)+\sigma\left(\mathbf{b}_{34}\right)\right)
$$

Double loop SF : $\ln S^{[1]}=\sigma\left(\mathbf{b}_{14}\right)+\sigma\left(\mathbf{b}_{23}\right)+\frac{1}{2}\left(\frac{C_{A}}{4 C_{F}}-1\right)\left(\sigma\left(\mathbf{b}_{12}\right)-\sigma\left(\mathbf{b}_{13}\right)-\sigma\left(\mathbf{b}_{24}\right)+\sigma\left(\mathbf{b}_{34}\right)\right)^{2}$

- This structure is independent on regularization procedure!

REMINDER: TMD factorization

$$
S^{\mathrm{TMD}}=e^{\sigma(\mathbf{b})}=e^{\sigma^{+}(\mathbf{b})} e^{\sigma^{-}(\mathbf{b})}, \quad \sigma^{ \pm}=\frac{A}{2} \ln \left(\left(\delta^{+}\right)^{2} \zeta^{ \pm 1}\right)+\frac{B}{2}
$$

Matrix factorization of rapidity divergences
Using the decomposition above, inserting it into DPD SF we obtain matrix relation

$$
S^{\mathrm{DPD}}=s^{T}\left(\ln \left(\delta^{+}\right)\right) \cdot s\left(\ln \left(\delta^{-}\right)\right)
$$

$s=\exp \left[\left(\begin{array}{cc}A^{\mathbf{1 1}}\left(\mathbf{b}_{1,2,3,4}\right) & A^{\mathbf{1 8}}\left(\mathbf{b}_{1,2,3,4}\right) \\ A^{\mathbf{8 1}}\left(\mathbf{b}_{1,2,3,4}\right) & A^{\mathbf{8 8}}\left(\mathbf{b}_{1,2,3,4}\right)\end{array}\right) \ln (\delta)+\left(\begin{array}{ll}B^{\mathbf{1 1}}\left(\mathbf{b}_{1,2,3,4}\right) & B^{\mathbf{1 8}}\left(\mathbf{b}_{1,2,3,4}\right) \\ B^{\mathbf{8 1}}\left(\mathbf{b}_{1,2,3,4}\right) & B^{\mathbf{8 8}}\left(\mathbf{b}_{1,2,3,4}\right)\end{array}\right)\right]$
$A^{\mathbf{i j}}$ and $B^{\mathbf{i j}}$ are rather complicated non-linear compositions of TMD's A and B

Universităt Regensburg

Finalizing DPD factorization

$$
\begin{gathered}
\frac{d \sigma}{d X} \sim \int\left[d b_{T} e^{-i(q b)_{T}}\right] H_{1}\left(Q_{1}^{2}\right) H_{2}\left(Q_{2}^{2}\right)\left(F^{\mathbf{1}}, F^{\mathbf{8}}\right)\left(\begin{array}{cc}
S^{\mathbf{1 1}} & S^{\mathbf{1 8}} \\
S^{\mathbf{8 1}} & S^{\mathbf{8 8}}
\end{array}\right)\binom{\bar{F}^{\mathbf{1}}}{\bar{F}^{\mathbf{8}}}+Y \\
\text { spliting rapidity singularities } \\
S\left(b_{1,2,3,4}\right) \rightarrow s^{T}\left(b_{1,2,3,4} ; \zeta^{+}\right) s\left(b_{1,2,3,4} ; \zeta^{-}\right) \\
\downarrow \\
\frac{d \sigma}{d X} \sim \int\left[d b_{T} e^{-i(q b)_{T}}\right] e^{-i(q b)_{T}} H_{1}\left(Q_{1}^{2}\right) H_{2}\left(Q_{2}^{2}\right) F\left(z_{1,2}, b_{1,2,3,4} ; \zeta^{+}\right) \bar{F}\left(z_{1,2}, b_{1,2,3,4} ; \zeta^{-}\right)+Y \\
\uparrow \\
\text { DPD } \\
\left(s F_{h_{1}}\right)^{T}
\end{gathered}
$$

Matrix rapidity evolution

$$
\frac{d F\left(z_{1,2}, \mathbf{b}_{1,2,3,4} ; \zeta, \mu\right)}{d \ln \zeta}=-F\left(z_{1,2}, \mathbf{b}_{1,2,3,4} ; \zeta, \mu\right) \mathbf{D}\left(\mathbf{b}_{1,2,3,4}, \mu\right)
$$

where \mathbf{D} is matrix build (linearly) of TMD rapidity anomalous dimensions. E.g.

$$
D^{\mathbf{1 8}}=\frac{\mathcal{D}\left(\mathbf{b}_{12}\right)-\mathcal{D}\left(\mathbf{b}_{13}\right)-\mathcal{D}\left(\mathbf{b}_{24}\right)+\mathcal{D}\left(\mathbf{b}_{34}\right)}{\sqrt{N_{c}^{2}-1}}
$$

Let's look at multi-parton scattering

- Just as double-parton, but multi..(four WL's \rightarrow arbitrary number WL's)
- Too many color-singlets, better to work with explicit color indices (color-multi-matrix)

$$
\begin{gathered}
\Sigma^{\left(a_{1} \ldots a_{N}\right) ;\left(d_{1} \ldots d_{N}\right)}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{N}\right)=\boldsymbol{\Sigma}\left(\mathbf{b}_{1, \ldots, N}\right) \\
\boldsymbol{\Sigma}(\{b\})=\langle 0| T\left\{\left[\boldsymbol{\Phi}_{-n} \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\right]\left(b_{N}\right) \ldots\left[\boldsymbol{\Phi}_{-n} \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\right]\left(b_{1}\right)\right\}|0\rangle
\end{gathered}
$$

Color-matrix notation

- All color flow in the same direction
- i 'th WL has generator \mathbf{T}_{i}
- In total the soft factor is color-neutral

$$
\sum_{i} \mathbf{T}_{i}=0
$$

- Color-neutrality \rightarrow gauge invariance + cancellation IR singularities

Let's look at multi-parton scattering

- Just as double-parton, but multi..(four WL's \rightarrow arbitrary number WL's)
- Too many color-singlets, better to work with explicit color indices (color-multi-matrix)

$$
\begin{array}{r}
\Sigma^{\left(a_{1} \ldots a_{N}\right) ;\left(d_{1} \ldots d_{N}\right)}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{N}\right)=\boldsymbol{\Sigma}\left(\mathbf{b}_{1, \ldots, N}\right) \\
\boldsymbol{\Sigma}(\{b\})=\langle 0| T\left\{\left[\boldsymbol{\Phi}_{-n} \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\right]\left(b_{N}\right) \ldots\left[\boldsymbol{\Phi}_{-n} \boldsymbol{\Phi}_{-\bar{n}}^{\dagger}\right]\left(b_{1}\right)\right\}|0\rangle
\end{array}
$$

Result at NNLO is amazingly simple

$$
\boldsymbol{\Sigma}\left(\mathbf{b}_{1, \ldots, N}\right)=\exp \left(-\sum_{i<j} \mathbf{T}_{i}^{A} \mathbf{T}_{j}^{A} \sigma\left(\mathbf{b}_{i j}\right)+\mathcal{O}\left(a_{s}^{3}\right)\right)
$$

- $\mathbf{T}_{i}^{A} \mathbf{T}_{j}^{A}=$ "dipole"
- $\mathcal{O}\left(a_{s}^{3}\right)$ contains also "color-multipole" terms
- Rapidity factorization for dipole part is straightforward (assuming TMD factorization)

The factorization of rapidity divergences seems to exists.

- True?
- In which case it is violated?
- Criterion of rapidity factorization?
- Can we have some other benefit from it?
-

> We need a dedicated study of rapidity divergences.

The factorization of rapidity divergences seems to exists.

- True?
- In which case it is violated?
- Criterion of rapidity factorization?
- Can we have some other benefit from it?
-

We need a dedicated study of rapidity divergences.

Step I: Origin and counting rules for rapidity divergences.

Consider a diagram with gluon radiated to/by light-like WL.

Consider a diagram with gluon radiated to/by light-like WL.

$$
\int^{\infty} \frac{d \sigma}{\sigma} \int d^{d} y \frac{F\left(y^{+}=\text {const }\right)}{\left[-\left(2 y^{+}+y_{\perp}^{2}\right)^{2}+i 0\right]^{p}}
$$

- Divergent configuration is then gluon radiated to the far-end of WL, from the "plane" transverse to the direction of WL.
- The position of the plane is unimportant.
- Let us send the "plane" close to infinity and associate rapidity divergences with this plane.

Counting rules for rapidity divergences

1. Consider a subgraph with attached to WL gluon.
2. Send attached end to infinity, another end to the transverse (to WL!) plane.
3. If it is possible, +1 power of rapidity divergence, remove this subgraph. If not consider a larger subgraph.

Examples of high degree divergences

Counting rules for rapidity divergences

1. Consider a subgraph with attached to WL gluon.
2. Send attached end to infinity, another end to the transverse (to WL!) plane.
3. If it is possible, +1 power of rapidity divergence, remove this subgraph. If not consider a larger subgraph.

Examples of low degree divergences

$\ln \delta^{+} \delta^{-}$

$\ln \delta^{+} \delta^{-}$

$\ln \delta^{+} \delta^{-}$

$\ln \delta^{+} \delta^{-}$

Important lessons

- The rapidity divergences are associated with planes! Not with directions.
- The planes defined unambiguously. However, in (TMD-like) soft factor we have two light-like directions, i.e. two planes and two independent types of rapidity divergences. The requirement of non-intersection of these planes defines them unambiguously.
- Counting rules are just alike UV divergence counting rules.

Step II: From planes to points

Rapidity divergences associated with transverse planes (or better to say with the layer between the transverse plane and infinity). Let us construct a conformal transformation which maps it to the point (to a sphere).

Universitãt Regensburg

Conformal-stereographic transformation

$$
\mathcal{C}_{\bar{n}}:\left\{x^{+}, x^{-}, x_{\perp}\right\} \rightarrow\left\{\frac{-1}{2 a} \frac{1}{\lambda+2 a x^{+}}, x^{-}+\frac{a x_{\perp}^{2}}{\lambda+2 a x^{+}}, \frac{x_{\perp}}{\lambda+2 a x^{+}}\right\}
$$

- Translation - special conformal transformation (along n) - Translation
- a and λ are free parameters

Conformal-stereographic transformation

$$
\mathcal{C}_{\bar{n}}:\left\{x^{+}, x^{-}, x_{\perp}\right\} \rightarrow\left\{\frac{-1}{2 a} \frac{1}{\lambda+2 a x^{+}}, x^{-}+\frac{a x_{\perp}^{2}}{\lambda+2 a x^{+}}, \frac{x_{\perp}}{\lambda+2 a x^{+}}\right\}
$$

- Translation - special conformal transformation (along n) - Translation
- a and λ are free parameters

Universitãt Regensburg

Conformal-stereographic transformation

$$
\mathcal{C}_{\bar{n}}:\left\{x^{+}, x^{-}, x_{\perp}\right\} \rightarrow\left\{\frac{-1}{2 a} \frac{1}{\lambda+2 a x^{+}}, x^{-}+\frac{a x_{\perp}^{2}}{\lambda+2 a x^{+}}, \frac{x_{\perp}}{\lambda+2 a x^{+}}\right\}
$$

- Translation - special conformal transformation (along n) - Translation
- a and λ are free parameters

Universităt Regensburg

Conformal-stereographic transformation

$$
\mathcal{C}_{\bar{n}}:\left\{x^{+}, x^{-}, x_{\perp}\right\} \rightarrow\left\{\frac{-1}{2 a} \frac{1}{\lambda+2 a x^{+}}, x^{-}+\frac{a x_{\perp}^{2}}{\lambda+2 a x^{+}}, \frac{x_{\perp}}{\lambda+2 a x^{+}}\right\}
$$

- Translation - special conformal transformation (along n) - Translation
- a and λ are free parameters

Universităt Regensburg三

Composition of two conformal-stereographic transformations

$$
C_{n \bar{n}}=\mathcal{C}_{n} \mathcal{C}_{\bar{n}}=\mathcal{C}_{\bar{n}} \mathcal{C}_{n}
$$

With the special choice of parameters

$$
a \lambda<0, \quad \bar{a} \bar{\lambda}<0, \quad(a \bar{a})^{2}<\frac{1}{2 \rho_{T}^{2}} \quad \rho_{T}^{2}>\max \left\{b_{i}^{2}\right\},
$$

any DY-like soft factor transforms to a compact object.

Universităt Regensburg

In conformal QFT rapidity divergences equivalent to UV divergences

- The UV renormalization imposes rapidity divergence renormalization

Universitãt Regensburg

In conformal QFT rapidity divergences equivalent to UV divergences

- The UV renormalization imposes rapidity divergence renormalization

Universitãt Regensburg

In conformal QFT rapidity divergences equivalent to UV divergences

- The UV renormalization imposes rapidity divergence renormalization
- There are also UV renormalization factors in cusps (we omit them for a moment)

RDRT in conformal theory

In a conformal theory rapidity divergences can be removed (renormalized) by a multiplicative factor.

$$
C_{n \bar{n}}^{-1}(\mathbf{Z}(\{v\}, \mu))=\mathbf{R}_{n}\left(\{b\}, \nu^{+}\right)
$$

Rapidity anomalous dimension (RAD)

$$
\mathbf{D}(\{b\})=\frac{1}{2} \mathbf{R}_{n}^{-1}\left(\{b\}, \nu^{+}\right) \nu^{+} \frac{d}{d \nu^{+}} \mathbf{R}_{n}\left(\{b\}, \nu^{+}\right),
$$

In CSS notation it is $-K$, in [Becher,Neubert] $F_{q \bar{q}}$, in SCET literature γ_{ν}.
(In CFT) DY-like Soft factors expresses as

$$
\boldsymbol{\Sigma}\left(\{b\}, \delta^{+}, \delta^{-}\right)=e^{2 \mathbf{D}(\{b\}) \ln \left(\delta^{+} / \nu^{+}\right)} \overbrace{\boldsymbol{\Sigma}_{0}\left(\{b\}, \nu^{2}\right)}^{\text {finite }} e^{2 \mathbf{D}^{\dagger}(\{b\}) \ln \left(\delta^{-} / \nu^{-}\right)},
$$

Step III: From conformal theory to QCD

QCD at the critical point

QCD is conformal in $4-2 \epsilon^{*}$ dimensions

$$
\beta\left(\epsilon^{*}\right)=0, \quad \Rightarrow \quad \epsilon^{*}=-a_{s} \beta_{0}-a_{s}^{2} \beta_{1}-\ldots
$$

It is very useful trick, allows to restore "conformal-violating" terms, see e.g.[Braun,Manashov,1306.5644]

Step III: From conformal theory to QCD

QCD at the critical point

QCD is conformal in $4-2 \epsilon^{*}$ dimensions

$$
\beta\left(\epsilon^{*}\right)=0, \quad \Rightarrow \quad \epsilon^{*}=-a_{s} \beta_{0}-a_{s}^{2} \beta_{1}-\ldots
$$

It is very useful trick, allows to restore "conformal-violating" terms, see e.g.[Braun,Manashov,1306.5644]

Thus, at $4-2 \epsilon^{*}$ dimensions, the rapidity renormalization theorem works.

Universitãt Regensburg

RTRD works at any finite order of QCD
Proof by induction

- Important input: Counting of rap.div. is independent on number of dimensions
- Important input: At 1-loop QCD is conformal = RTRD hold.
- (1) All Leading divergences cancel by R.
- (2) Make shift $\epsilon^{*} \rightarrow \epsilon^{*}+\beta_{0} a_{s}$.
- (3) Modify R such that next-to-leading divegences cancel (it can be done perturbatively, thanks to a_{s})
- Repeat (2-3) N times, and got renormalization at a_{s}^{N+1} order.

RTRD works at any finite order of QCD
Proof by induction

- Important input: Counting of rap.div. is independent on number of dimensions
- Important input: At 1-loop QCD is conformal = RTRD hold.
- (1) All Leading divergences cancel by R.
- (2) Make shift $\epsilon^{*} \rightarrow \epsilon^{*}+\beta_{0} a_{s}$.
- (3) Modify R such that next-to-leading divegences cancel (it can be done perturbatively, thanks to a_{s})
- Repeat (2-3) N times, and got renormalization at a_{S}^{N+1} order.

Soft factor has the form

$$
\begin{gathered}
\boldsymbol{\Sigma}\left(\{b\}, \delta^{+}, \delta^{-}\right)=e^{2 \mathbf{D}(\{b\}) \ln \left(\delta^{+} / \nu^{+}\right)} \overbrace{\boldsymbol{\Sigma}_{0}\left(\{b\}, \nu^{2}\right)}^{\text {finite }} e^{2 \mathbf{D}^{\dagger}(\{b\}) \ln \left(\delta^{-} / \nu^{-}\right)} \\
\mathbf{D}_{\mathrm{QCD}} \neq \mathbf{D}_{\mathrm{CFT}}
\end{gathered}
$$

Example then it does not work (no factorization?)
There are talks about "dipole-like" distributions that could appear in processes like $p p \rightarrow h X$ e.g. [Boer,et al,1607.01654]

However, it is straightforward to show that the factorization is necessarily broken (or have not closed form)

Example then it does not work (no factorization?)
There are talks about "dipole-like" distributions that could appear in processes like $p p \rightarrow h X$ e.g. [Boer,et al,1607.01654]

However, it is straightforward to show that the factorization is necessarily broken (or have not closed form)

Example then it does not work (no factorization?)
There are talks about "dipole-like" distributions that could appear in processes like $p p \rightarrow h X$ e.g. [Boer,et al,1607.01654]

However, it is straightforward to show that the factorization is necessarily broken (or have not closed form)

- The renormalization of dipole recouple colors \rightarrow extra gauge link \rightarrow ala BK equation.

Consequences

- Factorization for multi-Drell-Yan process
- Generalized CSS equation
- Correspondence between soft and rapidity anomalous dimensions
- Constraints of soft anomalous dimension.
- Universality of DY and SIDIS TMD soft factors
- Many others ...

Factorization of multi-parton scattering

$$
\frac{d \sigma}{d X} \sim \prod_{i} H_{i}^{f \bar{f}}\left(\frac{Q_{i}}{\mu}\right) \int d b_{i} e^{-i\left(q_{i} b_{i}\right)} \overline{\tilde{F}}_{\bar{f}}(\{\bar{x}\},\{b\}, \mu) \boldsymbol{\Sigma}(\{b\}) \tilde{F}_{f}(\{x\},\{b\}, \mu)+Y
$$

Factorization of multi-parton scattering

$$
\frac{d \sigma}{d X} \sim \prod_{i} H_{i}^{f \bar{f}}\left(\frac{Q_{i}}{\mu}\right) \int d b_{i} e^{-i\left(q_{i} b_{i}\right)} \tilde{F}_{\bar{f}}(\{\bar{x}\},\{b\}, \mu) \boldsymbol{\Sigma}(\{b\}) \tilde{F}_{f}(\{x\},\{b\}, \mu)+Y
$$

Factorization of multi-parton scattering

Factorization of multi-parton scattering

Factorization of multi-parton scattering

$$
\begin{aligned}
& \frac{d \sigma}{d X} \sim \prod_{i} H_{i}^{f \bar{f}}\left(\frac{Q_{i}}{\mu}\right) \int d b_{i} e^{-i\left(q_{i} b_{i}\right)} \bar{F}_{\bar{f}}\left(\{\bar{x}\},\{b\}, \mu, \nu^{-}\right) \boldsymbol{\Sigma}_{0}^{-1}\left(\{b\}, \nu^{2}\right) F_{f}\left(\{x\},\{b\}, \mu, \nu^{+}\right) \\
& F_{f}\left(\{x\},\{b\}, \nu^{+}\right)= \\
& \boldsymbol{\Sigma}_{0}\left(\{b\}, \nu^{2}\right) \mathbf{R}^{\dagger-1}\left(\{b\}, \nu^{-}\right) \tilde{F}_{f}(\{x\},\{b\})
\end{aligned}
$$

Finite multiPD

Finite multiPD

- The definition of collinear matrix element include zero-bin subtraction

$$
\tilde{F}\left(\{x\},\{b\}, \mu, \delta^{-}\right)=\overbrace{\boldsymbol{\Sigma}^{-1}\left(\mu ; \delta^{+}, \delta^{-}\right)}^{\text {z.b. }} \times \overbrace{\tilde{F}^{\text {us }}\left(\{x\},\{b\}, \mu, \delta^{+}\right)}^{\text {unsubtracted }}
$$

- Zero-bin partially cancel rapidity renormalization

$$
F\left(\{x\},\{b\}, \nu^{+}\right)=\boldsymbol{\Sigma}_{0}(\underbrace{\nu^{2}}_{=\nu^{+} \nu^{-}}) \mathbf{R}_{\bar{n}}^{\dagger-1}\left(\{b\}, \nu^{-}\right) \times \tilde{F}_{\{f\} \leftarrow h}\left(\{x\},\{b\}, \delta^{-}\right)
$$

Finite multiPD

- The definition of collinear matrix element include zero-bin subtraction

$$
\tilde{F}\left(\{x\},\{b\}, \mu, \delta^{-}\right)=\overbrace{\boldsymbol{\Sigma}^{-1}\left(\mu ; \delta^{+}, \delta^{-}\right)}^{\text {z.b. }} \times \overbrace{\tilde{F}^{\text {us }}\left(\{x\},\{b\}, \mu, \delta^{+}\right)}^{\text {unsubtracted }}
$$

- Zero-bin partially cancel rapidity renormalization

$$
\begin{aligned}
F\left(\{x\},\{b\}, \nu^{+}\right) & =\boldsymbol{\Sigma}_{0}(\underbrace{\nu^{2}}_{=\nu^{+} \nu^{-}}) \mathbf{R}_{\bar{n}}^{\dagger-1}\left(\{b\}, \nu^{-}\right) \times \tilde{F}_{\{f\} \leftarrow h}\left(\{x\},\{b\}, \delta^{-}\right) \\
& =\mathbf{R}_{n}\left(\{b\}, \nu^{+}\right) \times \tilde{F}^{\mathrm{us}}\left(\{x\},\{b\}, \delta^{+}\right) \\
& =\underbrace{e^{-2 \mathbf{D}(\{b\}) \ln \left(\delta^{+} / \nu^{+}\right)} \times \tilde{F}^{\mathrm{us}}\left(\{x\},\{b\}, \delta^{+}\right)}_{\delta-\text { finite }}
\end{aligned}
$$

Rapidity evolution
The rapidity evolution is matrix evolution

$$
\nu^{+} \frac{d}{d \nu^{+}} F\left(\{x\},\{b\}, \mu, \nu^{+}\right)=\frac{1}{2} \mathbf{D}(\{b\}, \mu) \times F\left(\{x\},\{b\}, \mu, \nu^{+}\right)
$$

Boost invariant variables

- We define boost invariant variables

$$
\zeta=2\left(p^{+}\right)^{2} \frac{\nu^{-}}{\nu^{+}}, \quad \bar{\zeta}=2\left(p^{-}\right)^{2} \frac{\nu^{+}}{\nu^{-}}, \quad \zeta \bar{\zeta}=\left(2 p^{+} p^{-}\right)^{2}
$$

- In terms of these variables

$$
\begin{equation*}
\zeta \frac{d}{d \zeta} F_{\{f\} \leftarrow h}\left(\{x\},\{b\}, \mu, \zeta, \nu^{2}\right)=-\mathbf{D}^{\{f\}}(\{b\}, \mu) \times F_{\{f\} \leftarrow h}\left(\{x\},\{b\}, \mu, \zeta, \nu^{2}\right) \tag{1}
\end{equation*}
$$

ν^{2} is some IR scale.

- Generalized CS equation

$$
\mu^{2} \frac{d}{d \mu^{2}} \mathbf{D}(\{b\}, \mu)=\frac{1}{4} \sum_{i=1}^{N} \Gamma_{\text {cusp }}^{i} \mathbf{I}
$$

Scheme dependence

We can add arbitrary finite terms to the rapidity redefinition

$$
F\left(\{x\},\{b\}, \zeta, \nu^{2}\right) \rightarrow \mathbf{S} \times F\left(\{x\},\{b\}, \zeta, \nu^{2}\right) .
$$

It is equivalent to the scheme dependence for UV renormalization.

Natural definition
The soft factor remnant $\boldsymbol{\Sigma}_{0}$ can be absorbed to the definition of multiPD:

$$
\mathbf{S}\left(b, \mu, \nu^{2}\right) \boldsymbol{\Sigma}_{0}\left(\{b\}, \mu, \nu^{2}\right) \mathbf{S}^{T}\left(b, \mu, \nu^{2}\right)=\mathbf{I} .
$$

Universitãt Regensburg

Scheme dependence

We can add arbitrary finite terms to the rapidity redefinition

$$
F\left(\{x\},\{b\}, \zeta, \nu^{2}\right) \rightarrow \mathbf{S} \times F\left(\{x\},\{b\}, \zeta, \nu^{2}\right) .
$$

It is equivalent to the scheme dependence for UV renormalization.

Natural definition
The soft factor remnant $\boldsymbol{\Sigma}_{0}$ can be absorbed to the definition of multiPD:

$$
\mathbf{S}\left(b, \mu, \nu^{2}\right) \boldsymbol{\Sigma}_{0}\left(\{b\}, \mu, \nu^{2}\right) \mathbf{S}^{T}\left(b, \mu, \nu^{2}\right)=\mathbf{I} .
$$

In the TMD case it leads to the standard definition

$$
F(x, b, \mu, \zeta)=\sqrt{\Sigma_{\mathrm{TMD}}\left(b, \frac{\delta^{+}}{\sqrt{2} p^{+}} \sqrt{\zeta}, \frac{\delta^{+}}{\sqrt{2} p^{+}} \sqrt{\zeta}\right)} \tilde{F}\left(x, b, \delta^{+}\right)
$$

Universitãt Regensburg

Soft/rapidity anomalous dimension correspondence

The equivalence (under conformal transformation) between \mathbf{Z} and \mathbf{R} implies the equality between corresponding anomalous dimensions

$$
\gamma_{s}(\{v\})=2 \mathbf{D}(\{b\})
$$

It has been observed in [Li,Zhu,1604.01404].

- UV anomalous dimension independent on ϵ
- Rapidity anomalous dimension does depend on ϵ
- At ϵ^{*} conformal symmetry of QCD is restored

Soft/rapidity anomalous dimension correspondence

The equivalence (under conformal transformation) between \mathbf{Z} and \mathbf{R} implies the equality between corresponding anomalous dimensions

$$
\gamma_{s}(\{v\})=2 \mathbf{D}(\{b\})
$$

It has been observed in [Li,Zhu,1604.01404].

- UV anomalous dimension independent on ϵ
- Rapidity anomalous dimension does depend on ϵ
- At ϵ^{*} conformal symmetry of QCD is restored

In QCD

$$
\boldsymbol{\gamma}_{s}(\{v\})=2 \mathbf{D}\left(\{\mathbf{b}\}, \epsilon^{*}\right)
$$

- Exact relation!
- Connects different regimes of QCD
\rightarrow Lets test it.

Universităt Regensburg

$\boldsymbol{\gamma}_{s}(\{v\})=2 \mathbf{D}\left(\{\mathbf{b}\}, \epsilon^{*}\right)$

How to use it?

- Physical value is $\mathbf{D}(\{\mathbf{b}\}, 0)$
- $\epsilon^{*}=0-a_{s} \beta_{0}-a_{s}^{2} \beta_{1}-a_{s}^{3} \beta_{2}-\ldots$
- We can compare order by order in PT

$$
\begin{aligned}
& \mathbf{D}_{1}(\{b\})=\frac{1}{2} \boldsymbol{\gamma}_{1}(\{v\}), \\
& \mathbf{D}_{2}(\{b\})=\frac{1}{2} \boldsymbol{\gamma}_{2}(\{v\})+\beta_{0} \mathbf{D}_{1}^{\prime}(\{b\}), \\
& \mathbf{D}_{3}(\{b\})=\frac{1}{2} \boldsymbol{\gamma}_{3}(\{v\})+\beta_{0} \mathbf{D}_{2}^{\prime}(\{b\})+\beta_{1} \mathbf{D}_{1}^{\prime}(\{b\})-\frac{\beta_{0}^{2}}{2} \mathbf{D}_{1}^{\prime \prime}(\{b\}),
\end{aligned}
$$

Universitãt Regensburg

TMD rapidity anomalous dimension

- $N=2$, no matrix structure,

$$
\boldsymbol{B}=\frac{b^{2}}{4}, L=\ln \left(\frac{\boldsymbol{B} \mu^{2}}{e^{-2 \gamma_{E}}}\right) \leftrightarrow \ln \left(\frac{v_{12} \mu^{2}}{\nu^{2}}\right)
$$

$\gamma_{s}^{(1)}=L+0$
NLO

$$
-2\left(\boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)+\frac{1}{\epsilon}\right)=\mathcal{D}^{(1)}
$$

Obvious relation, QCD is conformal at leading order.

$$
\nu^{2}=4 e^{-2 \gamma_{E}}
$$

TMD rapidity anomalous dimension

- $N=2$, no matrix structure,

$$
\boldsymbol{B}=\frac{b^{2}}{4}, L=\ln \left(\frac{\boldsymbol{B} \mu^{2}}{e^{-2 \gamma_{E}}}\right) \leftrightarrow \ln \left(\frac{v_{12} \mu^{2}}{\nu^{2}}\right)
$$

$$
\begin{aligned}
\gamma_{s}^{(1)}= & L+0 \\
\gamma_{s}^{(2)}= & {\left[\left(\frac{67}{9}-2 \zeta_{2}\right) C_{A}-\frac{20}{18} N_{f}\right] L+} \\
& \left(28 \zeta_{3}+\ldots\right) C_{A}+\left(\frac{112}{27}-\frac{4}{3} \zeta_{2}\right) N_{f}
\end{aligned}
$$

$\left.\right|^{a_{s} \gamma_{s}^{(1)}+a_{s}^{2} \gamma_{s}^{(2)}}$
\square

TMD rapidity anomalous dimension

- $N=2$, no matrix structure,

$$
B=\frac{b^{2}}{4}, L=\ln \left(\frac{B \mu^{2}}{e^{-2 \gamma_{E}}}\right) \leftrightarrow \ln \left(\frac{v_{12} \mu^{2}}{\nu^{2}}\right)
$$

$$
\begin{aligned}
\gamma_{s}^{(1)}= & L+0 \\
\gamma_{s}^{(2)}= & {\left[\left(\frac{67}{9}-2 \zeta_{2}\right) C_{A}-\frac{20}{18} N_{f}\right] L+} \\
& \left(28 \zeta_{3}+\ldots\right) C_{A}+\left(\frac{112}{27}-\frac{4}{3} \zeta_{2}\right) N_{f} \\
\gamma_{s}^{(3)}= & {\left[\frac{245}{3} C_{A}^{2}+\ldots\right] L+} \\
& +\left(-192 \zeta_{5} C_{A}^{2}+\ldots+\frac{2080}{729} N_{f}^{2}\right)
\end{aligned}
$$

NLO NLO

$$
-2\left(\boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)+\frac{1}{\epsilon}\right)=\mathcal{D}^{(1)}
$$

\square

$$
\left.\mathrm{N}^{2} \mathrm{LO} \quad+\frac{1-\epsilon}{(1-2 \epsilon)(3-2 \epsilon)}\left(\frac{3(4-3 \epsilon)}{2 \epsilon} C_{A}-N_{f}\right)\right)
$$

$\mathrm{N}^{3} \mathrm{LO}$

$$
+\boldsymbol{B}^{\epsilon} \frac{\Gamma(-\epsilon)}{\epsilon} \beta_{0}+\frac{\beta_{0}}{2 \epsilon^{2}}-\frac{\Gamma_{1}}{2 \epsilon}
$$

[Echevarria,Scimemi,AV,1511.05590]

Expand in a_{s}
$. .+a_{s}^{3}\left(\Gamma_{3} L+\gamma^{(3)}\right)=. .+2 a_{s}^{2}\left[\mathcal{D}^{(3)}-\frac{2 \beta_{0}^{2}}{3} L^{3}-\left(\frac{\beta_{0} \Gamma_{1}}{2}+\beta_{1}\right) L^{2}+\beta_{0}\left(\gamma_{1}-2 \beta_{0} \zeta_{2}\right) L\right.$ $\left.-\beta_{0} \Gamma_{1} \frac{\zeta_{2}}{4}-\zeta_{2} \beta_{1}+\frac{2 \beta_{0}^{2}}{3}\left(\zeta_{3}-\frac{82}{9}\right)+26 \beta_{0} C_{A}\left(\zeta_{4}-\frac{8}{27}\right)\right]$

We found 3 -loop rapidity anomalous dimension

$$
\begin{gathered}
\text { We found 3-loop rapidity anomalous dimension } \\
\mathcal{D}_{L=0}^{(3)}=C_{A}^{2}\left(\frac{297029}{1458}+\frac{88}{3} \zeta_{2} \zeta_{3}+\ldots+96 \zeta_{5}\right)+\ldots+C_{F} N_{f}\left(\frac{-152}{9} \zeta_{3}-8 \zeta_{4}+\frac{1171 \mathbb{R}}{54}\right)
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{D}_{L=0}^{(3)}= & -\frac{C_{A}^{2}}{2}\left(\frac{12328}{27} \zeta_{3}-\frac{88}{3} \zeta_{2} \zeta_{3}-192 \zeta_{5}-\frac{297029}{729}+\frac{6392}{81} \zeta_{2}+\frac{154}{3} \zeta_{4}\right) \\
& -\frac{C_{A} N_{f}}{2}\left(-\frac{904}{27} \zeta_{3}+\frac{62626}{729}-\frac{824}{81} \zeta_{2}+\frac{20}{3} \zeta_{4}\right)- \\
& \frac{C_{F} N_{f}}{2}\left(-\frac{304}{9} \zeta_{3}+\frac{1711}{27}-16 \zeta_{4}\right)-\frac{N_{f}^{2}}{2}\left(-\frac{32}{9} \zeta_{3}-\frac{1856}{729}\right)
\end{aligned}
$$

- Coincides with the one calculated directly [Li,Zhu,1604.01404]
- The logarithmic structure of rapidity anomalous dimension also restored

$$
\begin{gathered}
\mu^{2} \frac{d}{d \mu^{2}} \mathcal{D}\left(a_{s}(\mu), \mathbf{b}\right)=\frac{\Gamma_{c u s p}\left(a_{s}(\mu)\right)}{2} \\
\text { vs. } \\
\nu^{2} \frac{d}{d \nu^{2}} \gamma_{s}(\nu, v)=\frac{\Gamma_{c u s p}}{2}
\end{gathered}
$$

UV anomalous dimensions independent on ϵ. UV anomalous dimension of rapidity anomalous dimension also.

Quadrupole part of SAD

$$
\begin{aligned}
\boldsymbol{\gamma}_{s}(\{v\})= & -\frac{1}{2} \sum_{[i, j]} \mathbf{T}_{i}^{A} \mathbf{T}_{j}^{A} \gamma_{\text {dipole }}\left(v_{i} \cdot v_{j}\right)-\sum_{[i, j, k, l]} i f^{A C E} i f^{E B D} \mathbf{T}_{i}^{A} \mathbf{T}_{j}^{B} \mathbf{T}_{k}^{C} \mathbf{T}_{l}^{D} \mathcal{F}_{i j k l} \\
& -\sum_{[i, j, k]} \mathbf{T}_{i}^{\{A B\}} \mathbf{T}_{j}^{C} \mathbf{T}_{k}^{D} i f^{A C E} i f^{E B D} C+\mathcal{O}\left(a_{s}^{4}\right),
\end{aligned}
$$

Quadrupole part has been calculated in [Almelid,Duhr,Gardi;1507.00047]

$$
\begin{aligned}
\tilde{C} & =a_{s}^{3}\left(\zeta_{2} \zeta_{3}+\frac{\zeta_{5}}{2}\right)+\mathcal{O}\left(a_{s}^{4}\right), \\
\tilde{\mathcal{F}}_{i j k l}(\{b\}) & =8 a_{s}^{3} \mathcal{F}\left(\tilde{\rho}_{i k j l}, \tilde{\rho}_{i l j k}\right)+\mathcal{O}\left(a_{s}^{4}\right),
\end{aligned}
$$

Quadrupole part of RAD

- Color structures are not affected by ϵ^{*}
- Quadrupole contribution depends only on conformal ratios

$$
\rho_{i j k l}=\frac{\left(v_{i} \cdot v_{j}\right)\left(v_{k} \cdot v_{l}\right)}{\left(v_{i} \cdot v_{k}\right)\left(v_{j} \cdot v_{l}\right)} \leftrightarrow \quad \leftrightarrow \quad \tilde{\rho}_{i j k l}=\frac{\left(b_{i}-b_{j}\right)^{2}\left(b_{k}-b_{l}\right)^{2}}{\left(b_{i}-b_{k}\right)^{2}\left(b_{j}-b_{l}\right)^{2}}
$$

The correspondence between SAD and RAD can be used also to constraint the SAD. It seems that structure of RAD (diagrammatically) is simpler.

Color-structure of soft anomalous dimension
As a consequence of Lorentz invariance one has

$$
\boldsymbol{\Sigma}(\{b\})=\boldsymbol{\Sigma}^{\dagger}(\{b\})
$$

It implies that RAD has only even color-multipoles

$$
\mathbf{D}(\{b\})=\sum_{\substack{n=2 \\ n \in \text { even }}}^{\infty} \sum_{i_{1}, \ldots, i_{n}=1}^{N}\left\{\mathbf{T}_{i_{1}}^{A_{1}} \ldots \mathbf{T}_{i_{n}}^{A_{n}}\right\} D_{A_{1} \ldots A_{n}}^{n ; i_{1} \ldots i_{n}}(\{v\})
$$

The correspondence between SAD and RAD can be used also to constraint the SAD. It seems that structure of RAD (diagrammatically) is simpler.

Color-structure of soft anomalous dimension
As a consequence of Lorentz invariance one has

$$
\boldsymbol{\Sigma}(\{b\})=\boldsymbol{\Sigma}^{\dagger}(\{b\})
$$

It implies that RAD has only even color-multipoles

$$
\mathbf{D}(\{b\})=\sum_{\substack{n=2 \\ n \in \text { even }}}^{\infty} \sum_{i_{1}, \ldots, i_{n}=1}^{N}\left\{\mathbf{T}_{i_{1}}^{A_{1}} \ldots \mathbf{T}_{i_{n}}^{A_{n}}\right\} D_{A_{1} \ldots A_{n}}^{n ; i_{1} \ldots i_{n}}(\{v\}) .
$$

In turn, $\boldsymbol{\gamma}_{s}(\{v\})=2 \mathbf{D}\left(\{\mathbf{b}\}, \epsilon^{*}\right)$, SAD has only even color-multipoles

$$
\boldsymbol{\gamma}_{s}(\{v\})=\sum_{\substack{n=2 \\ n \in \mathrm{even}}}^{\infty} \sum_{i_{1}, \ldots, i_{n}=1}^{N}\left\{\mathbf{T}_{i_{1}}^{A_{1}} \ldots \mathbf{T}_{i_{n}}^{A_{n}}\right\} \gamma_{A_{1} \ldots A_{n}}^{n ; i_{1} \ldots i_{n}}(\{v\}) .
$$

Absence of tri-pole is known [Aybat, et al,0607309;Dixon, et al, 0910.3653]

- Quadrupole arises at 3-loops
- Sextupole arises at 5-loops

Conclusion

I believe that there are other (not yet explored) consequences.
done TMD soft factor for SIDIS = TMD soft factor for DY (universality)

- Duality of TMD soft factor
- Possible lattice applications

Limitations

- T-ordered operator
- Unrestricted phase space
ϵ^{*} method is a very powerful tool
- 3-loop evolution kernel for a twist-2 string operator (utilizing 3-loop DGLAP anomalous dimension) [Braun, et al,]
- BK/BMS relation at sub-leading orders [S.Caron-Huot,talk at HEP]
- Matching coefficient functions for TMD operators
- ϵ^{*} can be used as a summation prescription

Conclusion

- The rapidity divergences are alike UV divergences (in CFT)
- Renormalization theorem for rapidity divergences
- RAD/SAD correspondence (checked up to three-loop order for $\mathrm{N}=2$ case (TMD), checked up to two-loop order for general case)
- Three-loop general rapidity anomalous dimension, and all order constraints on SAD
- Factorization for double-Drell-Yan (multi-Drell-Yan)

Universităt Regensburg

