Extraction of unpolarized TMD PDFs at NNLO: analysis and result

Alexey A. Vladimirov

Institut für Theoretische Physik Universität Regensburg

in collaboration with I.Scimemi based on [1706.01473](ver 2)

Resummation, Evolution, Factorization Madrid Nov.2017

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目目 のへの

November 13, 2017

Universität Regensburg

1 / 17

Motivation

Theory of TMDs

Huge progress in recent years

- Proof of collinear and rapidity factorization parts of TMD factorization
- NLO, NNLO, N³LO pertubative calculations
- Various W to Y matching

Phenomenology of TMDs

A lot of data & a lot of fits

- Plentiful asymmetries from HERMES, COMPASS
- Many individual fits
- First global fits (SIDIS+DY)[A.Bacchetta, at al, 1703.10157]

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目目 のへの

Motivation

Universität Regensburg

uTMDPDF from DY

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ = つくで

Motivation

uTMDPDF from DY

That's what we do!

A.Vladimirov

uTMDPDF from DY

November 13, 2017 3 / 17

That's what we do! But we just start.

Status

Theory state					
Universal					
Hard part	N ³ LO				
Evolution	N ³ LO				
Matching					
f_1	NNLO				
g_1	NLO				
h_1	(N)NLO				
h_{1T}^{\perp}	$(N)NLO(\neq 0!)$				
f_{1T}^{\perp}	NLO???				
h_1^\perp	-				
h_{1L}^{\perp}	-				
g_{1T}	-				

- arTeMiDe package for evaluation of TMDs and related cross-sections.
 Ver.1.1 includes f₁ (https://teorica.fis.ucm.es/artemide)
- We have extracted f_1 from DY and Z-boson production. (Presented here)

That's what we do! But we just start.

Status

- arTeMiDe package for evaluation of TMDs and related cross-sections.
 Ver.1.1 includes f₁ (https://teorica.fis.ucm.es/artemide)
- We have extracted f_1 from DY and Z-boson production. (Presented here)

$\begin{array}{c} \textbf{unpolarized Drell-Yan} \Rightarrow \text{ unpolarized TMDPDF} \\ \textbf{Theory input} \end{array}$

$$\frac{d\sigma}{dQdy \, d^2q_T} = H(Q,\mu) \int \frac{d^2b}{(2\pi)^2} e^{-ibq_T} F(x_A,b;\mu,\zeta) F(x_B,b;\mu,\zeta) + Y$$

$$F(x,\mathbf{b};\mu,\zeta) = R[\mathbf{b};(\mu,\zeta) \to (\mu_{\text{low}},\zeta_{\mu})] F^{\text{low}}(x;\mathbf{b})$$

$$F_k^{\text{low}}(x,\mathbf{b}) = \int_x^1 \frac{dy}{y} C_{k\leftarrow l}(y,\mathbf{b};\mu) f_l\left(\frac{x}{y},\mu\right) f_{NP}(y;\mathbf{b})$$

$\begin{array}{c} \textbf{unpolarized Drell-Yan} \Rightarrow \text{ unpolarized TMDPDF} \\ \textbf{Theory input} \end{array}$

$$\begin{split} \frac{d\sigma}{dQdy\,d^2q_T} &= H(Q,\mu) \int \frac{d^2b}{(2\pi)^2} \, e^{-ibq_T} \, F(x_A,b;\mu,\zeta) F(x_B,b;\mu,\zeta) + Y \\ F(x,\mathbf{b};\mu,\zeta) &= R[\mathbf{b};(\mu,\zeta) \rightarrow (\mu_{\mathrm{low}},\zeta_{\mu})] F^{\mathrm{low}}(x;\mathbf{b}) \\ F(x,\mathbf{b};\mu,\zeta) &= R[\mathbf{b};(\mu,\zeta) \rightarrow (\mu_{\mathrm{low}},\zeta_{\mu})] F^{\mathrm{low}}(x;\mathbf{b}) \\ &= \frac{e^{\mathrm{volution \ kernel}}}{\sum_{\substack{\mathrm{NLO} \\ \mathrm{NNLO \ NLO \ NNLO \ NLO \ N$$

We can define four successive orders								
Name	$ C_V ^2$	$C_{f \leftarrow f'}$	Г	γ_V	\mathcal{D}	PDF set	$a_s(run)$	ζ_{μ}
NLL/LO	a_s^0	a_s^0	a_s^2	a_s^1	a_s^2	nlo	nlo	NLL
NLL/NLO	a_s^1	a_s^1	a_s^2	a_s^1	a_s^2	nlo	nlo	NLO
NNLL/NLO	a_s^1	a_s^1	a_s^3	a_s^2	a_s^3	nnlo	nnlo	NNLL
NNLL/NNLO	a_s^2	a_s^3	a_s^3	a_s^2	a_s^2	nnlo	nnlo	NNLO

A.Vladimirov

uTMDPDF from DY

November 13, 2017 4 / 17

$\begin{array}{c} \textbf{unpolarized Drell-Yan} \Rightarrow \text{ unpolarized TMDPDF} \\ \textbf{Theory input} \end{array}$

$$\frac{d\sigma}{dQdy \, d^2 q_T} = H(Q, \mu) \int \frac{d^2 b}{(2\pi)^2} e^{-ibq_T} F(x_A, b; \mu, \zeta) F(x_B, b; \mu, \zeta) + \chi$$
pure TMD factorization
$$\Rightarrow \text{ small } q_T$$

$$F(x, \mathbf{b}; \mu, \zeta) = R[\mathbf{b}; (\mu, \zeta) \rightarrow (\mu_{\text{low}}, \zeta_{\mu})] F^{\text{low}}(x; \mathbf{b})$$

$$F(x, \mathbf{b}; \mu, \zeta) = R[\mathbf{b}; (\mu, \zeta) \rightarrow (\mu_{\text{low}}, \zeta_{\mu})] F^{\text{low}}(x; \mathbf{b})$$

$$F_k^{\text{low}}(x, \mathbf{b}) = \int_x^1 \frac{dy}{y} C_{k \leftarrow l}(y, \mathbf{b}; \mu) f_l\left(\frac{x}{y}, \mu\right) \frac{f_{NP}(y; \mathbf{b})}{\text{minory restricted}}$$

$$\frac{To \text{ fit}}{\text{minory restricted}}$$

We can define four successive orders								
Name	$ C_V ^2$	$C_{f \leftarrow f'}$	Г	γ_V	\mathcal{D}	PDF set	$a_s(run)$	ζ_{μ}
$\rm NLL/LO$	a_s^0	a_s^0	a_s^2	a_s^1	a_s^2	nlo	nlo	NLL
NLL/NLO	a_s^1	a_s^1	a_s^2	a_s^1	a_s^2	nlo	nlo	NLO
NNLL/NLO	a_s^1	a_s^1	a_s^3	a_s^2	a_s^3	nnlo	nnlo	NNLL
NNLL/NNLO	a_s^2	a_s^3	a_s^3	a_s^2	a_s^2	nnlo	nnlo	NNLO

A.Vladimirov

uTMDPDF from DY

November 13, 2017 4 / 17

unpolarized Drell-Yan⇒ unpolarized TMDPDF Theory input

We can define four successive orders								
Name	$ C_V ^2$	$C_{f \leftarrow f'}$	Г	γ_V	\mathcal{D}	PDF set	$a_s(run)$	ζ_{μ}
NLL/LO	a_s^0	a_s^0	a_s^2	a_s^1	a_s^2	nlo	nlo	NLL
NLL/NLO	a_s^1	a_s^1	a_s^2	a_s^1	a_s^2	nlo	nlo	NLO
NNLL/NLO	a_s^1	a_s^1	a_s^3	a_s^2	a_s^3	nnlo	nnlo	NNLL
NNLL/NNLO	a_s^2	a_s^3	a_s^3	a_s^2	a_s^2	nnlo	nnlo	NNLO

A.Vladimirov

uTMDPDF from DY

November 13, 2017 4 / 17

$\zeta\text{-}\mathrm{prescription}$

$$\ln(\mu^2 \mathbf{b}^2), \qquad \ln(\zeta \, \mathbf{b}^2)$$

- There are (potentially large) logs of **b**. Some prescription is needed to handle it.
- Typically, b^* -prescription used \Rightarrow induces power corrections and new parameters
- ζ -prescription does not introduce any artificial dependence

 ζ -prescription uses the freedom (granted to us by factorization theorem) to choose the scale in any convenient way.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目目 のへの

$\zeta\text{-}\mathrm{prescription}$

$$\ln(\mu^2 \mathbf{b}^2), \qquad \ln(\zeta \, \mathbf{b}^2)$$

- There are (potentially large) logs of **b**. Some prescription is needed to handle it.
- Typically, b^* -prescription used \Rightarrow induces power corrections and new parameters
- ζ -prescription does not introduce any artificial dependence

 ζ -prescription uses the freedom (granted to us by factorization theorem) to choose the scale in any convenient way.

This freedom has not been used yet.

Universität Regensburg

TMD evolution is multi-scale evolution

$$\mu^{2} \frac{dF(x, \mathbf{b}; \mu, \zeta)}{d\mu^{2}} = \frac{1}{2} \gamma_{K}(\mu, \zeta) F(x, \mathbf{b}; \mu, \zeta)$$
$$\zeta \frac{dF(x, \mathbf{b}; \mu, \zeta)}{d\zeta} = -\mathcal{D}(\mu, \mathbf{b}) F(x, \mathbf{b}; \mu, \zeta)$$

A.Vladimirov

uTMDPDF from DY

TMD evolution is multi-scale evolution

$$\mu^{2} \frac{dF(x, \mathbf{b}; \mu, \zeta)}{d\mu^{2}} = \frac{1}{2} \gamma_{K}(\mu, \zeta) F(x, \mathbf{b}; \mu, \zeta)$$
$$\zeta \frac{dF(x, \mathbf{b}; \mu, \zeta)}{d\zeta} = -\mathcal{D}(\mu, \mathbf{b}) F(x, \mathbf{b}; \mu, \zeta)$$

There are equi-evolution lines in the (μ, ζ) -plane

$$\mu^2 \frac{dF(x, \mathbf{b}; \mu, \zeta(\mu))}{d\mu^2} = 0.$$

A.Vladimirov

In the $\zeta\text{-}\mathrm{prescription}$ a TMD is EVOLUTIONless

$$\mu^2 \frac{d}{d\mu^2} F(x, \mathbf{b}; \mu, \zeta_{\mu}) = 0 \qquad \Leftrightarrow \qquad \zeta_{\mu} = \frac{2\mu}{|\mathbf{b}|} e^{-\gamma_E} \underbrace{\stackrel{\text{PT-calculable}}{\underset{\text{here LO}}{\overset{\text{here LO}}$$

 $\zeta\text{-}\mathrm{prescription}$ eliminates large logs from the expressions. Good example is the coefficient function:

$$F(x, \mathbf{b}; \mu, \zeta) = C(x, \mathbf{b}; \mu, \zeta) \otimes f(x, \mu)$$

A.Vladimirov

In the ζ -prescription a TMD is EVOLUTIONless

$$\mu^2 \frac{d}{d\mu^2} F(x, \mathbf{b}; \mu, \zeta_{\mu}) = 0 \qquad \Leftrightarrow \qquad \zeta_{\mu} = \frac{2\mu}{|\mathbf{b}|} e^{-\gamma_E} \overbrace{e^{3/2 + \dots}}^{\text{PT-calculable}}$$

 $\zeta\text{-}\mathrm{prescription}$ eliminates large logs from the expressions. Good example is the coefficient function:

$$F(x, \mathbf{b}; \mu, \zeta) = C(x, \mathbf{b}; \mu, \zeta) \otimes f(x, \mu)$$

$$C = \delta(\bar{x}) + a_s C_F \left[-2 \underbrace{\mathbf{L}_{\mu} p(x)}_{\substack{\text{never large} \\ \text{thanks to} \\ \text{charge} \\ \text{conservation}}} + 2\bar{x} + \delta(\bar{x}) \left(\underbrace{-\mathbf{L}_{\mu}^2 + \mathbf{L}_{\mu} \mathbf{l}_{\zeta} + 3\mathbf{L}_{\mu}}_{\substack{\text{charge} \\ \text{conservation}}} - \zeta_2 \right) \right]$$

uTMDPDF from DY

November 13, 2017 7 / 17

(日) (四) (王) (王) (王)

A.Vladimirov

In the ζ -prescription a TMD is EVOLUTIONless

 $\zeta\text{-}\mathrm{prescription}$ eliminates large logs from the expressions. Good example is the coefficient function:

$$F(x, \mathbf{b}; \mu, \zeta) = C(x, \mathbf{b}; \mu, \zeta) \otimes f(x, \mu)$$

$$C = \delta(\bar{x}) + a_s C_F \left[-2 \underbrace{\mathbf{L}_{\mu} p(x)}_{\substack{\text{never large} \\ \text{thanks to} \\ \text{charge} \\ \text{conservation}}}_{+2\bar{x} + \delta(\bar{x}) \left(\underbrace{-\mathbf{L}_{\mu}^2 + \mathbf{L}_{\mu} \mathbf{l}_{\zeta} + 3\mathbf{L}_{\mu}}_{=0} - \zeta_2 \right) \right]$$

charge conservation:
$$\int_0^1 dx C(x,b) \otimes f(x) = \text{const}$$

uTMDPDF from DY

November 13, 2017 7 / 17

고 노

イロン イヨン イヨン イヨン

.

In the ζ -prescription a TMD is EVOLUTIONless

$$\mu^2 \frac{d}{d\mu^2} F(x, \mathbf{b}; \mu, \zeta_{\mu}) = 0 \qquad \Leftrightarrow \qquad \zeta_{\mu} = \frac{2\mu}{|\mathbf{b}|} e^{-\gamma_E} \underbrace{ \begin{array}{c} \mathbf{PT-calculable} \\ \mathbf{here \ LO} \\ e^{3/2 + \dots} \end{array} }_{e^{3/2 + \dots}}$$

 $\zeta\text{-}\mathrm{prescription}$ eliminates large logs from the expressions. Good example is the coefficient function:

$$F(x, \mathbf{b}; \mu, \zeta) = C(x, \mathbf{b}; \mu, \zeta) \otimes f(x, \mu)$$

No need for b^* , since there are no large logs. But b^* can be used, (we are not). Our choose the simplest function: $\mu_{low} = \mu_{OPE} = \frac{C_0}{b} + 2$

charge conservation:
$$\int_0^1 dx C(x,b) \otimes f(x) = \text{const}$$

A.Vladimirov

uTMDPDF from DY

November 13, 2017 7 / 17

고 노

・ロト ・日ト ・ヨト ・ヨト

Perturbative uncertainties with in TMD cross-section

There are four perturbative scale entries \Rightarrow four constants to vary $\{c_1, c_2, c_3, c_4\}.$

$$\frac{d\sigma}{dX} = H(c_2\mu_{\text{hard}}) \left[R(c_2\mu_{\text{hard}} \to (c_3\mu_{\text{low}}, \zeta_{c_3\mu}; c_1\mu_0) F(c_4\mu_{\text{OPE}}, \zeta_{c_4\mu}) \right]^2$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目目 のへの

November 13, 2017

0

Universität Regensburg

8 / 17

A.Vladimirov

uTMDPDF from DY

Perturbative uncertainties with in TMD cross-section

A.Vladimirov

uTMDPDF from DY

Perturbative uncertainties with in TMD cross-section

There are four perturbative scale entries \Rightarrow four constants to vary $\{c_1, c_2, c_3, c_4\}.$ Rapidity Evolution is evolution disentangeled from TMD; Hard matching thanks to matching ζ -prescription $\frac{d\sigma}{dX} = H(c_2^{\bullet}\mu_{\text{hard}}) \left[R(\overset{\bullet}{c_2}\mu_{\text{hard}} \to (c_3\mu_{\text{low}}, \zeta_{c_3\mu}; \overset{\bullet}{c_1}\mu_0) F(c_4\mu_{\text{OPE}}, \zeta_{c_4\mu}) \right]^2$ Low Low scale scale matching matching Variation of c_i also leads to uncertanty in determi-

TR

イロト イポト イヨト イヨト

November 13, 2017

Universität Regensburg

8 / 17

A.Vladimirov

uTMDPDF from DY

nation of NP parameters

arTeMiDe

- FORTRAN 90 code
- Module structure
- Convolutions, evolution (LO,NLO,NNLO)
- $\bullet\,$ Fourier to $q_T\mbox{-space},$ integrations over phase space
- Scale-variation (ζ -prescription)
- User defined PDFs, scales, f_{NP}
- Efficient code (~ $10^9~{\rm TMDs}\sim~6.$ min at NNLO) Currently ver 1.1

Available at: https://teorica.fis.ucm.es/artemide

Future plans: add modules for fragmentations, and polarized TMDs

Universität Regensburg

A.Vladimirov

uTMDPDF from DY

November 13, 2017 9 / 17

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ = つくで

High- & low-energy data are used

- High-energy \Rightarrow precise fixation of asymptotic
- \bullet Low-energy \Rightarrow better access to NP structure
- To start with we considered only "well-established" data
- In the final fit $309 = \underbrace{163}_{\text{high}} + \underbrace{146}_{\text{low}}$ points used.

Included data (at $q_T < 0.2Q$)							
	reaction	\sqrt{s}	Q	comment	points		
E288	$p + Cu \to \gamma^* \to \mu\mu$	19.4 GeV	4-9 GeV	norm=0.8	35		
E288	$p + Cu \to \gamma^* \to \mu\mu$	23.8 GeV	4-9 GeV	norm=0.8	45		
E288	$p + Cu \to \gamma^* \to \mu\mu$	27.4 GeV	4-9 & 11-14 GeV	norm=0.8	66		
CDF+D0	$p + \bar{p} \rightarrow Z \rightarrow ee$	1.8 TeV	66-116 GeV		44		
CDF+D0	$p + \bar{p} \rightarrow Z \rightarrow ee$	1.96 TeV	66-116 GeV		43		
ATLAS	$p + p \rightarrow Z \rightarrow \mu \mu$	7 & 8 TeV	66-116 GeV	tiny errors!	18		
CMS	$p + p \rightarrow Z \rightarrow \mu \mu$	7 & 8 TeV	60-120 GeV		14		
LHCb	$p + p \rightarrow Z \rightarrow \mu \mu$	7 & 8 & 13 TeV	60-120 GeV		30		
ATLAS	$p + p \rightarrow Z/\gamma^* \rightarrow \mu\mu$	8 TeV	46-66 GeV		5		
ATLAS	$p + p \to Z/\gamma^* \to \mu\mu$	8 TeV	$116-150 {\rm GeV}$		9		
	Total 309						

Universität Regensburg

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ = つくで

Non-perturbative input $F = C \otimes f \times f_{NP}$

Universität Regensburg

uTMDPDF from DY

November 13, 2017 11 / 17

Non-perturbative input $F = C \otimes f \times f_{NP}$

Theory prediction: very small or zero $g_K = 0.01 \pm 0.03 \text{GeV}^2$ [I.Scimemi, AV, 1609.06047]

uTMDPDF from DY

November 13, 2017

11 / 17

イロン イヨン イヨン イヨン

Selection of f_{NP}

We have tested many models with different behaviour.

Lessons

- Test at NNLO. Since at NLO (or NLL) all models are equally good/bad.
- High-energy experiments favour Gaussian-like
- Low-energy experiment favour exponent-like
- Need at least 2 parameters (to control b^2 correction and the tail)

Selection of f_{NP}

We have tested many models with different behaviour.

Lessons

- Test at NNLO. Since at NLO (or NLL) all models are equally good/bad.
- High-energy experiments favour Gaussian-like
- Low-energy experiment favour exponent-like
- Need at least 2 parameters (to control b^2 correction and the tail)

Results

- For both models result practically the same
- NLL/LO has tremendously large error-bars \rightarrow **excluded**
- $\chi^2/dof \sim 1.2$ with 2+1 parameters
- Theoretical error-bands significantly decrease at NNLL/NNLO
- g_K is very important at lower orders, but tends to zero with order increase

A.Vladimirov

High-energy example: ATLAS 8 TeV (best precision)

 $\begin{array}{ll} c_1 \rightarrow \text{uncertainty of} \\ \text{RAD definition} \\ \int_{c_1\mu_0}^{\mu} \Gamma + \mathcal{D}^{\text{pert}}(c_1\mu_0) \\ H(c_2\mu)F(c_2\mu)F(c_2\mu) \\ \end{array} \begin{array}{ll} c_3 \rightarrow \text{uncertainty of} \\ \text{small-b matching} \\ \int_{c_1\mu_{0}}^{\mu} \Gamma + \mathcal{D}^{\text{pert}}(c_1\mu_0) \\ H(c_2\mu)F(c_2\mu)F(c_2\mu) \\ \end{array} \begin{array}{ll} c_3 \rightarrow \text{uncertainty of} \\ \text{small-b matching} \\ \int_{c_1\mu_{0}}^{\mu} \Gamma + \mathcal{D}^{\text{pert}}(c_1\mu_0) \\ H(c_2\mu)F(c_2\mu)F(c_2\mu) \\ \end{array} \begin{array}{ll} c_3 \rightarrow \text{uncertainty of} \\ \text{small-b matching} \\ \int_{c_1\mu_{0}}^{\mu} \Gamma + \mathcal{D}^{\text{pert}}(c_1\mu_0) \\ H(c_2\mu)F(c_2\mu)F(c_2\mu) \\ \end{array} \begin{array}{ll} c_3 \rightarrow \text{uncertainty of} \\ C(c_3\mu_{\text{low}}) \\ C(c_3\mu_{\text{low}}) \\ C(c_3\mu_{\text{low}}) \\ \end{array} \end{array}$

High-energy example: ATLAS 8 TeV (best precision)

 $\begin{array}{ll} c_1 \rightarrow \text{uncertainty of} \\ \text{RAD definition} \\ \int_{c_1\mu_0}^{\mu} \Gamma + \mathcal{D}^{\text{pert}}(c_1\mu_0) \\ H(c_2\mu)F(c_2\mu)F(c_2\mu) \\ \end{array} \begin{array}{ll} c_3 \rightarrow \text{uncertainty of} \\ \text{small-b matching} \\ \int_{c_1\mu_{0}}^{\mu} \Gamma + \mathcal{D}^{\text{pert}}(c_1\mu_0) \\ H(c_2\mu)F(c_2\mu)F(c_2\mu) \\ \end{array} \begin{array}{ll} c_3 \rightarrow \text{uncertainty of} \\ \text{small-b matching} \\ \int_{c_1\mu_{0}}^{\mu} \Gamma + \mathcal{D}^{\text{pert}}(c_1\mu_0) \\ H(c_2\mu)F(c_2\mu)F(c_2\mu) \\ \end{array} \begin{array}{ll} c_3 \rightarrow \text{uncertainty of} \\ \text{small-b matching} \\ \int_{c_1\mu_{0}}^{\mu} \Gamma + \mathcal{D}^{\text{pert}}(c_1\mu_0) \\ H(c_2\mu)F(c_2\mu)F(c_2\mu) \\ \end{array} \begin{array}{ll} c_3 \rightarrow \text{uncertainty of} \\ C(c_3\mu_{\text{low}}) \\ C(c_3\mu_{\text{low}}) \\ C(c_3\mu_{\text{low}}) \\ \end{array} \end{array}$

High-energy example: ATLAS 8 TeV (best precision)

 $\begin{array}{ll} c_1 \rightarrow \text{uncertainty of} \\ \text{RAD definition} \\ \int_{c_1\mu_0}^{\mu} \Gamma + \mathcal{D}^{\text{pert}}(c_1\mu_0) \\ H(c_2\mu)F(c_2\mu)F(c_2\mu) \\ \end{array} \begin{array}{ll} c_3 \rightarrow \text{uncertainty of} \\ \text{small-b matching} \\ C(c_3\mu_{\text{low}}) \otimes f(c_3\mu_{\text{low}}) \\ C(c_3\mu_{\text{low}}) \\ C(c_5,2) \end{array}$

High-energy example: ATLAS 8 TeV (best precision)


```
A.Vladimirov
```

uTMDPDF from DY

November 13, 2017 14 / 17

Low-energy example: E288 $\sqrt{s} = 19.4$ GeV, Q = 4 - 5 GeV

Low-energy example: E288 $\sqrt{s} = 19.4$ GeV, Q = 4 - 5 GeV

uTMDPDF from DY

November 13, 2017 14 / 17

Low-energy example: E288 $\sqrt{s} = 19.4$ GeV, Q = 4 - 5 GeV

Low-energy example: E288 $\sqrt{s} = 19.4$ GeV, Q = 4 - 5 GeV

uTMDPDF from DY

November 13, 2017 14 / 17 Uncertainties in TMD

A.Vladimirov

uTMDPDF from DY

November 13, 2017

Uncertainties in TMD

A.Vladimirov

uTMDPDF from DY

Conclusion

General

- This is the first extraction of uTMDPDF at NNLL/NNLO
- arTeMiDe ver.1.1 released DY, Z-boson, uTMDPDFs upto NNLL/NNLO teorica.fis.ucm.es/artemide

Particular

- ζ -prescription is a very nice tool.
- TMD factorization works at $q_T \lesssim 0.2Q$
- NLL/LO is completely unstable. At least NLO is needed (better go NNLO).
- q_K reduces with increase of perturbative order

Universität Regensburg

17 / 17

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ = つくで November 13, 2017

A.Vladimirov

uTMDPDF from DY

November 13, 2017 1 / 6

1 / 6

A.Vladimirov

uTMDPDF from DY

November 13, 2017 1 / 6

A.Vladimirov

uTMDPDF from DY

November 13, 2017 1 / 6

Order	$\frac{\chi^2}{d.o.f.}$	λ_1	λ_2	$g_K \ imes 10^{-2}$				
	Model 1							
NLL/NLO	$1.17 \substack{+1.32 \\ -0.07}$	$0.189^{+0.009}_{-0.009} \stackrel{+0.114}{_{-0.052}}$	$0.425^{+0.054}_{-0.045}$ $^{+0.047}_{-0.250}$	$2.31^{+0.25}_{-0.24} {}^{+1.44}_{-1.19}$				
NNLL/NLO	$1.21 {}^{+1.16}_{-0.02}$	$0.175^{+0.008}_{-0.008}$ $^{+0.089}_{-0.041}$	$0.532^{+0.076}_{-0.067}$ $^{+0.426}_{-0.203}$	$1.27^{+0.22}_{-0.21} {}^{+1.19}_{-1.27}$				
NNLL/NNLO	$1.23 \substack{+0.30 \\ -0.13}$	$0.228^{+0.016}_{-0.013} {}^{+0.034}_{-0.060}$	$0.306^{+0.031}_{-0.026} {}^{+0.265}_{-0.063}$	$0.73^{+0.24}_{-0.23} {}^{+1.09}_{-0.73}$				
Model 2								
NLL/NLO	$1.18 \substack{+1.31 \\ -0.07}$	$0.199^{+0.011}_{-0.010}$	$0.443^{+0.061}_{-0.052}$ $^{+0.503}_{-0.093}$	$2.18^{+0.26}_{-0.25}{}^{+1.57}_{-1.06}$				
NNLL/NLO	$1.22 {}^{+1.16}_{-0.01}$	$0.181^{+0.009}_{-0.009}$ $^{+0.099}_{-0.045}$	$0.562^{+0.092}_{-0.075}$ $^{+0.468}_{-0.206}$	$1.18^{+0.22}_{-0.21} {}^{+1.12}_{-1.18}$				
NNLL/NNLO	$1.29 \stackrel{+0.26}{_{-0.18}}$	$0.244^{+0.016}_{-0.015}$ $^{+0.035}_{-0.069}$	$0.306^{+0.034}_{-0.029} {}^{+0.216}_{-0.050}$	$0.59^{+0.24}_{-0.27} {}^{+1.01}_{-0.59}$				

Universität Regensburg

A.Vladimirov

uTMDPDF from DY

November 13, 2017 3 / 6

・ロト (個) (目) (日) (日) (日) (日)

Order	$\frac{\chi^2}{d.o.f.}$	λ_1	λ_2				
Model 1							
NLL/NLO	$2.33 \substack{+2.76 \\ -0.68}$	$0.321^{+0.008}_{-0.007}$ $^{+0.095}_{-0.100}$	$0.271^{+0.014}_{-0.013}$ $^{+0.155}_{-0.063}$				
NNLL/NLO	$1.76 \begin{array}{c} +1.25 \\ -0.48 \end{array}$	$0.289^{+0.004}_{-0.004}$ $^{+0.007}_{-0.121}$	$0.424^{+0.051}_{-0.045}$ $^{+0.673}_{-0.139}$				
NNLL/NNLO	$1.34 \ ^{+0.44}_{-0.20}$	$0.271^{+0.007}_{-0.006} {}^{+0.076}_{-0.073}$	$0.277^{+0.015}_{-0.012} {}^{+0.081}_{-0.042}$				
	Model 2						
NLL/NLO	$2.19 \stackrel{+2.34}{_{-0.64}}$	$0.329^{+0.008}_{-0.008}$ $^{+0.047}_{-0.101}$	$0.289^{+0.019}_{-0.017}$ $^{+0.276}_{-0.008}$				
NNLL/NLO	$1.65 \substack{+1.32 \\ -0.39}$	$0.236^{+0.005}_{-0.004}$ $^{+0.070}_{-0.064}$	$0.440^{+0.049}_{-0.044}$ $^{+0.573}_{-0.126}$				
NNLL/NNLO	$1.36 \substack{+0.35 \\ -0.18}$	$0.284^{+0.007}_{-0.006}$ $^{+0.074}_{-0.079}$	$0.280^{+0.019}_{-0.017}$ $^{+0.086}_{-0.034}$				

Universität Regensburg

uTMDPDF from DY

November 13, 2017 4 / 6

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▼

Limits of application of TMD factorizaiton \leftrightarrow size of Y-term

$$\frac{d\sigma}{dQdy\,d^2q_T} = H(Q,\mu)\int \frac{d^2b}{(2\pi)^2}\;e^{-ibq_T}\;F(x_A,b;\mu,\zeta)F(x_B,b;\mu,\zeta) + Y$$

TMD factorization derived at small q_T the leading correction $\sim q_T^2/Q^2$

Limits of application of TMD factorizaiton \leftrightarrow size of Y-term

$$\frac{d\sigma}{dQdy d^2q_T} = H(Q,\mu) \int \frac{d^2b}{(2\pi)^2} e^{-ibq_T} F(x_A,b;\mu,\zeta) F(x_B,b;\mu,\zeta) + Y$$
We include all points with $q_T < \delta_T Q$
To find the value of δ_T , we check the stability of the fit

• Make fits with increasing $\delta_T (0.1 \rightarrow 0.3)(165 \rightarrow 399 \text{ points})$

• The value of $\chi^2/d.o.f.$ blows up for δ_T outside allowed region
$$\delta_T Q$$

$$\frac{d\sigma}{dq_T} \int \frac{q_T}{Q} \int \frac{q_T}{Q} \int \frac{q_T}{Q} \int \frac{\sigma}{Q} \int \frac{\sigma}{TMD} \int \frac{\sigma}{TMD}$$

A.Vladimirov

uTMDPDF from DY

November 13, 2017 5 / 6

Scans of δ_T (E288 not included)

Universität Regensburg

A.Vladimirov

uTMDPDF from DY

November 13, 2017 6 / 6

-

Scans of δ_T (E288 not included)

- $\delta_T < 0.2$ save region,
- $\delta_T < 0.25$ un-save region,
- $\delta_T > 0.25$ TMD factorization does not work.

To be on the save side we used $\delta_T = 0.2$ There are 309 data points

TR

Universität Regensburg

◆ 三 → 三 三 → ○ へ (*)
 November 13, 2017 6 / 6

Image: A math a math