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General structure of the factorization theorems

The modern factorization theorems have the following general structure
dσ

dX︸︷︷︸
cross−X

= H︸︷︷︸
Hard part

perturbative

× f1 ⊗ ...⊗ J2︸ ︷︷ ︸
Parton distributions
jet-functions, etc
Non-pertrubative

universal

× S︸︷︷︸
Soft factor(s)
perturbative ?

+ Some power
suppressed terms

Individual terms in the product are singular, and requires redefinition/refactorization
The next factorization step is to factorize the divergences in soft factors
The SF factorization is essential for lower -energy studies (e.g. SIDIS) and for
resummation

In this talk, I will present the last ingredient of TMD-like
factorization theorems, namely, the factorization of rapidity

divergences and some of its consequences

Currently, it the only proof of rapidity divergences factorization
It is unusual. It is build on the conformal transformation and mapping of divergences.
The proof is made for the multi-Drell-Yan process (see [talk of M.Diehl]) for arbitrary
number of particles.
It allows a number of non-trivial predictions and consequences.
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Reminder
TMD factorization
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TMD factorization

TMD factorization (Q2 � q2
T ) gives us the following expression

dσ

dQdy d2qT
∼
∫
d4x eiqx

∑
X

〈h1|Jµ(x)|X;h2〉〈X;h2|Jν(0)|h1〉

dσ

dQdy d2qT
∼
∫
d2bT e

−i(qb)TH(Q2) Φh1(z1, bT )S(bT )∆h2
(z2, bT ) + Y

TMD factorization

TMD PDF (singular)

TMD FF (singular)

TMD soft factor

power suppressed
terms

(very singular)

All components of factorization formula
contain rapidity divergences.

Within soft factor rapidity divergencs
entangle PDF and FF
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

Light-like vectors:

n2 = n̄2 = 0, (n · n̄) = 1

Wilson line (ray)

Φv(x) = P exp

(
ig

∫ ∞
0

dσvµAAµ (vσ + x)TA
)

Multiple divergences!
Ultraviolet (renormalize)
Collinear & mass (cancel in sum)
Rapidity
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Assumption: exp(A ln(δ+δ−) +B) = exp

(
A

2
ln((δ+)2ζ) +

B

2

)
exp

(
A

2
ln((δ−)2ζ−1) +

B

2

)

dσ ∼
∫
d2bT e

−i(qb)TH(Q2) Φh1(z1, bT )S(bT )∆h2
(z2, bT ) + Y

dσ ∼
∫
d2bT e

−i(qb)TH(Q2) F (z1, bT ; ζ+) D(z2, bT ; ζ−) + Y

spliting rapidity singularities
S(bT )→

√
S(bT ; ζ+)

√
S(bT ; ζ−)

TMD FF√
S∆h2

(regular)

TMD PDF√
SΦh1

(regular)

The extra "factorization" introduces
extra scale ζ.

And corresponded evolution equation

ζ
d

dζ
F =

A

2
F = −DF

Rapidity anomalous dimension (RAD)
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Double-Drell-Yan factorization

dσ

dX
∼
∫

[dbT e
−i(qb)T ]H1(Q2

1)H2(Q2
2) FAh1(z1,2, b1,2,3,4)SAB(b1,2,3,4)F̄Bh2(z1,2, b1,2,3,4) + Y

DPD (singular)

DPD soft factor

power suppressed
terms

(very singular)

pictures from [1510.08696]

Structure is similar to TMD Drell-Yan
but now it contains

COLOR
The soft factor is a matrix
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Color structure makes a lot of difference

FAh1S
ABF̄Bh2

singlets−−−−−→
(
F1, F8

)( S11 S18

S81 S88

)(
F̄1

F̄8

)

Soft-factors Sij are sum of Wilson loops and double Wilson loops (all possible
connections).
Soft-factors are non-zero even in the integrated case.
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Finalizing DPD factorization

dσ

dX
∼
∫

[dbT e
−i(qb)T ]H1(Q2

1)H2(Q2
2)
(
F1, F8

)( S11 S18

S81 S88

)(
F̄1

F̄8

)
+ Y

dσ

dX
∼
∫

[dbT e
−i(qb)T ] e−i(qb)TH1(Q2

1)H2(Q2
2) F (z1,2, b1,2,3,4; ζ+)F̄ (z1,2, b1,2,3,4; ζ−) + Y

spliting rapidity singularities
S(b1,2,3,4)→ sT (b1,2,3,4; ζ+)s(b1,2,3,4; ζ−)

(possible at NNLO [AV,1608.04920])

DPD
sFh2

(regular)

DPD(
sFh1

)T
(regular)

Matrix rapidity evolution

dF (z1,2,b1,2,3,4; ζ, µ)

d ln ζ
= −F (z1,2,b1,2,3,4; ζ, µ)D(b1,2,3,4, µ)

where D is matrix build (linearly) of TMD rapidity anomalous dimensions. E.g.

D18 =
D(b12)−D(b13)−D(b24) +D(b34)√

N2
c − 1
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The same story for multi-parton scattering

Just as double-parton, but multi..(four WL’s → arbitrary number WL’s)
The soft-factor has many Wilson lines [M.Diehl,D.Ostermeier,A.Schafer,1111.0910]

Σ({b}) = 〈0|T{[Φ−nΦ†−n̄](bN ) . . . [Φ−nΦ†−n̄](b1)}|0〉

Result at NNLO is amazingly simple

Σ(b1,..,N ) = exp

−∑
i<j

TAi TAj σ(bij) +O(a3
s)


σ – TMD soft factor
TAi TAj = "dipole"

O(a3
s) contains also "color-multipole" terms

Rapidity factorization for dipole part is
straightforward (assuming TMD factorization)
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The rapidity factorization is shown at 2-loops,
but not proved.

Proof is required to define universal non-perturbative functions.
There are possible issues at 3-loops, due to 4-WL interactions.
To make a proof we have to understand the structure of divergences of SFs.
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

Although traditionally the diagrams are
considered in the momentum space, the
coordinate representation is more natural
and clean.

Ultraviolet (small-distances)
Collinear & mass (large distances)
Rapidity (small/large distances)
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

∫
dxdy D(x− y)

=

∫ ∞
0

dx+

∫ ∞
0

dy−
1

x+y−

=

∫ ∞
0

dx+

x+

∫ ∞
0

dy−

y−

= (UV + IR) (UV + IR)

Some people set it to zero.
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

∫
dxdy D(x− y)

=

∫ ∞
0

dx+

∫ ∞
0

dy−
1

(2x+y− + b2
T )

= IR at x, y →∞

However, it exactly cancels IR from the previous
diagram

Proved at all orders,
e.g.[Echevarria,Scimemi,AV,1511.05590]
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

∫
dxdy D(x− y)

=

∫ ∞
0

dx+

∫ ∞
0

dy−
1

(2x+y− + b2
T )

= rap. div. at lim
λ→0
{x = λ, y = λ−1}

Rapidity divergence is a special kind of
divergences, UV& IR

Does not cancel.
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Deeper analysis shows that rapidity divergences are
similar to UV divergences

The rapidity divergence corresponds to the radiation of gluon from the transverse
"plane" to the light-cone infinity.
The counting rule for rapidity divergences is topologically (on the level of graphs)
similar to counting of UV divergences.
See the detailed analysis in [1707.07606].

Rapidity divergences associated with transverse planes (or better to say with the layer
between the transverse plane and infinity). Let us construct a conformal transforma-
tion which maps it to the point (to a sphere).
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Conformal-stereographic transformation

Cn̄ : {x+, x−, x⊥} → {
−1

2a

1

λ+ 2ax+
, x− +

ax2
⊥

λ+ 2ax+
,

x⊥
λ+ 2ax+

}

Translation – special conformal transformation (along n) – Translation
a and λ are free parameters
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Composition of two conformal-stereographic transformations

Cnn̄ = CnCn̄ = Cn̄Cn
With the special choice of parameters

aλ < 0, āλ̄ < 0, (aā)2 <
1

2ρ2
T

ρ2
T>max{b2i },

any DY-like soft factor transforms to a compact object.

Σ(b) Ω(v)
Cnn̄
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In conformal QFT rapidity divergences equivalent to UV divergences

The UV renormalization imposes rapidity divergence renormalization

There are also UV renormalization factors in cusps (we omit them for a moment)

R(b)Σ(b)R†(b) Z(v)Ω(v)Z†(v)
Cnn̄

finite finite
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RDRT in conformal theory

In a conformal theory rapidity divergences can be removed (renormalized) by a mul-
tiplicative factor.

C−1
nn̄ (Z({v}, µ)) = Rn({b}, ν+)

Rapidity anomalous dimension (RAD)

D({b}) =
1

2
R−1
n ({b}, ν+)ν+ d

dν+
Rn({b}, ν+),

In CSS notation it is −K, in [Becher,Neubert] Fqq̄ , in SCET literature γν .

(In CFT) DY-like Soft factors expresses as

Σ({b}, δ+, δ−) = e2D({b}) ln(δ+/ν+)

finite︷ ︸︸ ︷
Σ0({b}, ν2) e2D

†({b}) ln(δ−/ν−),
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From CFT to QCD

From conformal theory to QCD

QCD at the critical point

QCD is conformal in 4− 2ε∗ dimensions

β(ε∗) = 0, ⇒ ε∗ = −asβ0 − a2
sβ1 − ....

Thus, at 4− 2ε∗ dimensions, the rapidity renormalization theorem
works.

Starting from the leading conformal invariant term, one proves by induction

Σ({b}, δ+, δ−) = e2D({b}) ln(δ+/ν+)

finite︷ ︸︸ ︷
Σ0({b}, ν2) e2D

†({b}) ln(δ−/ν−),

DQCD 6= DCFT
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From CFT to QCD

Main conclusion

The rapidity divergences in TMD-like soft factors can be renormalized at any (finite)
order of perturbation theory. It is equivalent to proof of factorization of rapidity

divergences.

Many consequences
Factorization for multi-Drell-Yan process.
Correspondence between soft and rapidity anomalous dimensions.
N3LO rapidity anomalous dimension (for "free").
Constraints of soft anomalous dimension.
Universality of DY and SIDIS TMD soft factors
Absence of (naive) factorization for particular processes.
Many others, (yet unexplored).

A.Vladimirov RdRt November 14, 2017 19 / 25



SAD/RAD correspondence

Soft/rapidity anomalous dimension correspondence

The equivalence (under conformal transformation) between Z and R implies the equality
between corresponding anomalous dimensions

γs({v}) = 2D({b})

It has been observed in [Li,Zhu,1604.01404].

UV anomalous dimension independent on ε
Rapidity anomalous dimension does depend on ε
At ε∗ conformal symmetry of QCD is restored

In QCD

γγγs({v}) = 2D({b}, ε∗)

Exact relation!
Connects different regimes of QCD

→ Lets test it.
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SAD/RAD correspondence

γγγs({v}) = 2D({b}, ε∗)

How to use it?

Physical value is D({b}, 0)

ε∗ = 0− asβ0 − a2
sβ1 − a3

sβ2 − ....
We can compare order by order in PT

D1({b}) =
1

2
γγγ1({v}),

D2({b}) =
1

2
γγγ2({v}) + β0D′1({b}),

D3({b}) =
1

2
γγγ3({v}) + β0D′2({b}) + β1D′1({b})−

β2
0

2
D′′1 ({b}),
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SAD/RAD correspondence

TMD rapidity anomalous dimension

N = 2, no matrix structure, BBB = b2

4
, L = ln

(
BBBµ2

e−2γE

)
↔ ln

(
v12µ

2

ν2

)

γs({v}) = 2D({b}, ε∗)

γ
(1)
s =L+0

γ
(2)
s =[( 67

9
−2ζ2)CA− 20

18
Nf ]L+

(28ζ3+...)CA+( 112
27
− 4

3
ζ2)Nf

γ
(3)
s =[ 245

3
C2
A+...]L+

+(−192ζ5C
2
A+...+ 2080

729
N2
f )

−2(BBBεΓ(−ε)+ 1
ε )=D(1)

BBB2εΓ2(−ε)
(
CA(2ψ−2ε−2ψ−ε+ψε+γE)=D(2)

+ 1−ε
(1−2ε)(3−2ε)

(
3(4−3ε)

2ε
CA−Nf

))
+BBBε

Γ(−ε)
ε

β0+
β0
2ε2
−Γ1

2ε

[Echevarria,Scimemi,AV,1511.05590]

asγ
(1)
s

+ a2
sγ

(2)
s

+ a3
sγ

(3)
s

asD(1)

+ a2
sD(2)

+ a3
s?D(3)

NLO NLO

N2LO

N3LO

N2LO

Expand in as

as

(
ln

(
b2µ2

ν2

)
+ 0

)
= as

(
ln

(
b2µ2

4e−2γE

)
+ 0

)
Obvious relation, QCD is conformal at leading order.

ν2 = 4e−2γE

..+ a2
s

(
Γ2L+ γ(2)

)
= ..+ 2a2

s

(
D(2) − 2β0(L2 + ζ2)

)
We found 2-loop rapidity anomalous dimension

D(2)
L=0 =

(
404

27
− 14ζ3

)
CA −

112

27

Nf

2

..+ a3
s

(
Γ3L+ γ(3)

)
= ..+ 2a2

s

[
D(3) − 2β2

0
3
L3 −

(
β0Γ1

2
+ β1

)
L2 + β0(γ1 − 2β0ζ2)L

−β0Γ1
ζ2
4
− ζ2β1 +

2β2
0

3

(
ζ3 − 82

9

)
+ 26β0CA

(
ζ4 − 8

27

) ]
We found 3-loop rapidity anomalous dimension

D(3)
L=0 = C2

A

(
297029

1458
+

88

3
ζ2ζ3 + ...+ 96ζ5

)
+ ...+ CFNf

(
−152

9
ζ3 − 8ζ4 +

11711

54

)
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2β2
0

3

(
ζ3 − 82

9

)
+ 26β0CA

(
ζ4 − 8

27

) ]
We found 3-loop rapidity anomalous dimension

D(3)
L=0 = C2

A

(
297029

1458
+

88

3
ζ2ζ3 + ...+ 96ζ5

)
+ ...+ CFNf

(
−152

9
ζ3 − 8ζ4 +

11711

54

)
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SAD/RAD correspondence

TMD rapidity anomalous dimension

N = 2, no matrix structure, BBB = b2

4
, L = ln

(
BBBµ2

e−2γE

)
↔ ln

(
v12µ

2

ν2

)

γs({v}) = 2D({b}, ε∗)

γ
(1)
s =L+0

γ
(2)
s =[( 67

9
−2ζ2)CA− 20

18
Nf ]L+

(28ζ3+...)CA+( 112
27
− 4

3
ζ2)Nf

γ
(3)
s =[ 245

3
C2
A+...]L+

+(−192ζ5C
2
A+...+ 2080

729
N2
f )

−2(BBBεΓ(−ε)+ 1
ε )=D(1)

BBB2εΓ2(−ε)
(
CA(2ψ−2ε−2ψ−ε+ψε+γE)=D(2)

+ 1−ε
(1−2ε)(3−2ε)

(
3(4−3ε)

2ε
CA−Nf

))
+BBBε

Γ(−ε)
ε

β0+
β0
2ε2
−Γ1

2ε

[Echevarria,Scimemi,AV,1511.05590]

asγ
(1)
s + a2

sγ
(2)
s + a3

sγ
(3)
s asD(1) + a2

sD(2) + a3
s?D(3)

NLO NLO

N2LO

N3LO

N2LO

Expand in as

as

(
ln

(
b2µ2

ν2

)
+ 0

)
= as

(
ln

(
b2µ2

4e−2γE

)
+ 0

)
Obvious relation, QCD is conformal at leading order.

ν2 = 4e−2γE

..+ a2
s

(
Γ2L+ γ(2)

)
= ..+ 2a2

s

(
D(2) − 2β0(L2 + ζ2)

)
We found 2-loop rapidity anomalous dimension
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SAD/RAD correspondence

D(3)
L=0 = −

C2
A

2

(
12328

27
ζ3 −

88

3
ζ2ζ3 − 192ζ5 −

297029

729
+

6392

81
ζ2 +

154

3
ζ4

)
−
CANf

2

(
−

904

27
ζ3 +

62626

729
−

824

81
ζ2 +

20

3
ζ4

)
−

CFNf

2

(
−

304

9
ζ3 +

1711

27
− 16ζ4

)
−
N2
f

2

(
−

32

9
ζ3 −

1856

729

)

Coincides with the one calculated directly [Li,Zhu,1604.01404]
The logarithmic structure of rapidity anomalous dimension also restored

µ2 d

dµ2
D(as(µ),b) =

Γcusp(as(µ))

2

vs.

ν2 d

dν2
γs(ν, v) =

Γcusp

2

UV anomalous dimensions independent on ε. UV anomalous dimension of rapidity
anomalous dimension also.
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SAD/RAD correspondence

Quadrupole part of SAD

DDD({b}) = −
1

2

∑
[i,j]

TAi TAj DTMD(bij)−
∑

[i,j,k,l]

ifACEifEBDTAi TBj TCk TDl Fijkl

−
∑

[i,j,k]

T
{AB}
i TCj TDk if

ACEifEBDC +O(a4
s),

Quadrupole part has been calculated in [Almelid,Duhr,Gardi;1507.00047]

C̃ = a3
s

(
ζ2ζ3 +

ζ5

2

)
+O(a4

s),

F̃ijkl({b}) = 8a3
sF(ρ̃ikjl, ρ̃iljk) +O(a4

s),

ρijkl =
(vi · vj)(vk · vl)
(vi · vk)(vj · vl)

↔ ρ̃ijkl =
(bi − bj)2(bk − bl)2

(bi − bk)2(bj − bl)2

Matrix CS equation

µ2 dD(µ, {b})
dµ2

=
N∑
i=1

Γicusp

4
I,
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SAD/RAD correspondence

Main conclusion

The rapidity divergences in TMD-like soft factors can be renormalized at any (finite)
order of perturbation theory. It is equivalent to proof of factorization of rapidity

divergences.

Many consequences
Factorization for multi-Drell-Yan process.
Evolution for multiPDs (at 3-loops).
Correspondence between soft and rapidity anomalous dimensions.
N3LO rapidity anomalous dimension (for "free").
Constraints of soft anomalous dimension.
Universality of DY and SIDIS TMD soft factors
Absence of (naive) factorization for particular processes.
Many others, (yet unexplored).
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Example then it does not work (no factorization?)

There are talks about "dipole-like" distributions that could appear in processes like pp→ hX
e.g. [Boer,et al,1607.01654]

However, it is straightforward to show that the factorization is necessarily broken (or have
not closed form)

Cnn̄

To have factorization
separate R factors

are needed

In the tranformed SF
there is a single
singular point

The renormalization of dipole recouple colors → extra gauge link → ala BK equation.
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Quadrupole part of SAD

γγγs({v}) = −
1

2

∑
[i,j]

TAi TAj γdipole(vi · vj)−
∑

[i,j,k,l]

ifACEifEBDTAi TBj TCk TDl Fijkl

−
∑

[i,j,k]

T
{AB}
i TCj TDk if

ACEifEBDC +O(a4
s),

Quadrupole part has been calculated in [Almelid,Duhr,Gardi;1507.00047]

C̃ = a3
s

(
ζ2ζ3 +

ζ5

2

)
+O(a4

s),

F̃ijkl({b}) = 8a3
sF(ρ̃ikjl, ρ̃iljk) +O(a4

s),

Quadrupole part of RAD

Color structures are not affected by ε∗

Quadrupole contribution depends only on conformal ratios

ρijkl =
(vi · vj)(vk · vl)
(vi · vk)(vj · vl)

↔ ρ̃ijkl =
(bi − bj)2(bk − bl)2

(bi − bk)2(bj − bl)2
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The correspondence between SAD and RAD can be used also to constraint the SAD.
It seems that structure of RAD (diagrammatically) is simpler.

Color-structure of soft anomalous dimension

As a consequence of Lorentz invariance one has

Σ({b}) = Σ†({b})

It implies that RAD has only even color-multipoles

D({b}) =
∞∑
n=2

n∈even

N∑
i1,...,in=1

{TA1
i1
...TAnin }D

n;i1...in
A1...An

({v}).

In turn, γγγs({v}) = 2D({b}, ε∗), SAD has only even color-multipoles

γγγs({v}) =
∞∑
n=2

n∈even

N∑
i1,...,in=1

{TA1
i1
...TAnin }γ

n;i1...in
A1...An

({v}).

Absence of tri-pole is known [Aybat, et al,0607309;Dixon, et al, 0910.3653]
Quadrupole arises at 3-loops
Sextupole arises at 5-loops
etc.

A.Vladimirov RdRt November 14, 2017 3 / 3



The correspondence between SAD and RAD can be used also to constraint the SAD.
It seems that structure of RAD (diagrammatically) is simpler.

Color-structure of soft anomalous dimension

As a consequence of Lorentz invariance one has

Σ({b}) = Σ†({b})

It implies that RAD has only even color-multipoles

D({b}) =
∞∑
n=2

n∈even

N∑
i1,...,in=1

{TA1
i1
...TAnin }D

n;i1...in
A1...An

({v}).

In turn, γγγs({v}) = 2D({b}, ε∗), SAD has only even color-multipoles

γγγs({v}) =
∞∑
n=2

n∈even

N∑
i1,...,in=1

{TA1
i1
...TAnin }γ

n;i1...in
A1...An

({v}).

Absence of tri-pole is known [Aybat, et al,0607309;Dixon, et al, 0910.3653]
Quadrupole arises at 3-loops
Sextupole arises at 5-loops
etc.

A.Vladimirov RdRt November 14, 2017 3 / 3


	From CFT to QCD
	SAD/RAD correspondence
	Appendix

