Transverse momentum dependent (TMD) factorization:
 status and progress

Alexey A. Vladimirov

Institut für Theoretische Physik
Universität Regensburg
DPG conference
Mar. 2018

Universitãt Regensburg

Original parton model

- Hadrons are build from partons (quarks and gluons)
- In the fast moving hadron all partons move collinearly and carry the fraction of momentum $x_{i}\left(\sum_{i} x_{i}=1\right)$
- The probability distribution of partons is given by Parton Distribution Functions (PDFs)
$\mathrm{P}_{\text {hadron }}$

Universitãt Regensburg

Original parton model

- Hadrons are build from partons (quarks and gluons)
- In the fast moving hadron all partons move collinearly and carry the fraction of momentum $x_{i}\left(\sum_{i} x_{i}=1\right)$
- The probability distribution of partons is given by Parton Distribution Functions (PDFs)

$$
f_{q \leftarrow h}(x)
$$

Partons distribution function are central objects of high-energy QCD

Nowadays, we known that the structure of hadron is much more involved then parton distribution functions.

My talk is about one of the generalizations of parton model, that take into account transverse momentum of partons

Transverse momentum dependent (TMD)

- Partons (quarks and gluons) moves almost collinear to the hadrom momentum
- Partons (quarks and gluons) also have transverse momentum
- The probability distribution of partons is given by Transverse Momentum dependent Parton Distribution Functions (TMD PDFs)
$\mathrm{P}_{\text {hadron }}$

Transverse momentum dependent (TMD)

- Partons (quarks and gluons) moves almost collinear to the hadrom momentum
- Partons (quarks and gluons) also have transverse momentum
- The probability distribution of partons is given by Transverse Momentum dependent Parton Distribution Functions (TMD PDFs)

TMD distirbutions are naturally defined in b_{T}-space

$$
F_{q \leftarrow h}\left(x, k_{T}\right) \quad \Leftrightarrow \quad F_{q \leftarrow h}\left(x, b_{T}\right)
$$

There is no special interpretation in b_{T} space

Transverse momentum was always presented in the parton model as small (power) corrections.
Why and where TMD corrections are large?

Universitãt Regensburg

Transverse momentum was always presented in the parton model as small (power) corrections. Why and where TMD corrections are large?

Transverse momentum spectrum of particle production.

In the region where produced transverse momentum
is compatible to
inrinsic transverse momentum

Universitãt Regensburg

Example: pT-spectum of Z-boson

Different parts of pT-spectrum
are dominated
by different physics

Universitãt Regensburg

Example: pT-spectum of Z-boson

Different parts of pT-spectrum
are dominated
by different physics

Universitãt Regensburg

Example: pT-spectum of Z-boson

Different parts of pT-spectrum
are dominated
by different physics

Universitãt Regensburg

Example: pT-spectum of Z-boson

Transverse momentum dependent factorization and collinear factorization independent and complimentary

Transverse momentum was always presented in standard parton model as small (power) corrections.
Why and where it is large?

Transverse momentum spectrum of particle production.

In the region where
produced transverse momentum
is compatible to
inrinsic transverse momentum

Universitãt Regensburg

Transverse momentum was always presented in standard parton model as small (power) corrections. Why and where it is large?

Transverse momentum spectrum of particle production.

In the region where produced transverse momentum is compatible to inrinsic transverse momentum

Spin and angular momentum structure of hadron.

Intrinsic transverse momentum is
natural sorce of the angular momentum

Universitãt Regensburg

Transverse momentum distributions of leading order

N	U	L	T
U	f_{1}		$\mathrm{~h}_{1}^{+}$
L		g_{1}	$\mathrm{~h}_{1 \mathrm{~L}}^{+}$
T	$\mathrm{f}_{1 \mathrm{I}}^{\mathrm{t}}$	$\mathrm{g}_{1 \mathrm{~T}}$	$\mathrm{~h}_{1}$
$\mathrm{~h}_{1 i}^{+}$			

Transverse momentum distributions of leading order
Have analog in "naive" parton model

Transverse momentum distributions of leading order
Have analog in "naive" parton model O○ Have not analog

O Change orientation of spinProduce spin

Transverse momentum distributions of leading order

Transverse momentum was always presented in standard parton model as small (power) corrections. Why and where it is large?

Transverse momentum spectrum of particle production.

In the region where
produced transverse momentum
is compatible to inrinsic transverse momentum

Spin and angular momentum structure of hadron.

Intrinsic transverse momentum is natural sorce of angular momentum

Transverse momentum was always presented in standard parton model as small (power) corrections. Why and where it is large?

Transverse momentum spectrum of particle production.

In the region where produced transverse momentum
is compatible to inrinsic transverse momentum

Spin and angular momentum structure of hadron.

Intrinsic transverse momentum is
natural sorce of angular momentum

Jet sub-structure, multi-parton scattering, ...

Factorization theorems

In perturbative QCD cross-sections are expressed as products (integral convolutions) of

- Process dependent, but calculable coefficient functions
- Process independent, but non-calculable distribution functions

$$
\frac{d \sigma}{d X} \sim f_{A}\left(x_{A}\right) \otimes \hat{\sigma}\left(x_{A}, x_{B}\right) \otimes f_{B}\left(x_{B}\right)+\text { power corrections }
$$

- The statement of the theorems is the statement on singularities of Feynman diagrams
- The (artificial) split of singularities, introduces (artificial) scales, and evolution
- TMD factorization deals with larger set of singularities

Factorization of Drell-Yan process

$$
\frac{d \sigma}{d X} \sim f_{A}\left(x_{A}\right) \otimes \hat{\sigma}\left(x_{A}, x_{B}\right) \otimes f_{B}\left(x_{B}\right)
$$

Tree order

Factorization of Drell-Yan process

Universităt Regensburg
三 のค

Factorization of Drell-Yan process

TMD factorization

Simpler in soft-collinear effective theory (SCET)

Summation of soft gluon exchanges \Rightarrow Wilson lines

$$
[x, y]=P \exp \left(i g \int_{x}^{y} d z^{\mu} A_{\mu}(z)\right)
$$

Parallel transporter of gluon field.

- Central objects of soft physics
- Preserve gauge invariance
- Present in all elements of factorization theorems

Example: parton distribution function

$$
\left.\left.f(x)=\int \frac{d \lambda}{2 \pi} e^{i x p \lambda}\langle\text { hadron }| \bar{q}(\lambda n)[\lambda n, 0] q(0) \right\rvert\, \text { hadron }\right\rangle
$$

$$
n^{2}=0
$$

on light-cone

TMD factorization is full of (light-like) Wilson lines

$$
\frac{d \sigma}{d X} \simeq H(Q) \int \frac{d^{2} b}{(2 \pi)^{2}} e^{i(b k)_{T}} f\left(x_{A}, b\right) S(b) f\left(x_{B}, b\right)
$$

TMD factorization is full of (light-like) Wilson lines

$$
\frac{d \sigma}{d X} \simeq H(Q) \int \frac{d^{2} b}{(2 \pi)^{2}} e^{i(b k)_{T}} f\left(x_{A}, b\right) S(b) f\left(x_{B}, b\right)
$$

Universitãt Regensburg

TMD factorization is full of (light-like) Wilson lines

$$
\frac{d \sigma}{d X} \simeq H(Q) \int \frac{d^{2} b}{(2 \pi)^{2}} e^{i(b k)_{T}} f\left(x_{A}, b\right) S(b) f\left(x_{B}, b\right)
$$

Universitãt Regensburg

Soft factor is vacuum matrix element of a Wilson loop.

$$
S(b)=\langle 0|[0, \pm \infty n][\pm \infty n+\mathbf{b}, \mathbf{b}][\mathbf{b}, \pm \infty \bar{n}+\mathbf{b}][\pm \infty \bar{n}, 0]|0\rangle
$$

- Geometrically non-compact
- Light-cone directions
- Process dependent (\pm depends on the process)

Soft factor is vacuum matrix element of a Wilson loop.

$$
S(b)=\langle 0|[0, \pm \infty n][\pm \infty n+\mathbf{b}, \mathbf{b}][\mathbf{b}, \pm \infty \bar{n}+\mathbf{b}][\pm \infty \bar{n}, 0]|0\rangle
$$

- Geometrically non-compact
- Light-cone directions
- Process dependent (\pm depends on the process)
- Singular

$$
H(Q) \int d^{2} b e^{i(b k)} \underset{\text { singular }}{\substack{\text { regular } \\ f\left(x_{A}, b\right) S(b) f\left(x_{B}, b\right)}}
$$

The problem is in the soft factor. It mixes divergences of different kinds.

Factorization is incomplete

Universitãt Regensburg

Various kinds of divergences

OUltraviolet
(renormalized)

Universitãt Regensburg

Various kinds of divergences

OUltraviolet
(renormalized)
OCollinear
(cancel in sum)
○Mass divergences (cancel in sum)

Universitãt Regensburg

Various kinds of divergences

OUltraviolet
(renormalized)
OCollinear
(cancel in sum)
OMass divergences (cancel in sum)

ORapidity divergences (???)

Universitãt Regensburg

Universităt Regensburg

Universităt Regensburg

In fact, TMD factorization is two factorizations collinear + factorization of soft factor
Each factorization brings its own (factorization) scale TMD distribution depends on two scales

$$
F(x, b ; \mu, \zeta)
$$

Universitãt Regensburg

In fact, TMD factorization is two factorizations

 collinear + factorization of soft factorEach factorization brings its own (factorization) scale
TMD distribution depends on two scales

$$
F(x, b ; \mu, \zeta)
$$

$$
\begin{gathered}
\text { TMD evolution } \\
\text { is 2D evolution } \\
\mu^{2} \frac{d F(x, b ; \mu, \zeta)}{d \mu^{2}}=\gamma_{F}(\mu, \zeta) F(x, b ; \mu, \zeta) \\
\zeta \frac{d F(x, b ; \mu, \zeta)}{d \zeta}=-\mathcal{D}(\mu, b) F(x, b ; \mu, \zeta)
\end{gathered}
$$

- Anomalous dimensions γ_{F} and \mathcal{D} are known up to three-loops.
- Anomalous dimension are universal for all TMD distributions

In fact, TMD factorization is two factorizations

 collinear + factorization of soft factorEach factorization brings its own (factorization) scale
TMD distribution depends on two scales

$$
F(x, b ; \mu, \zeta)
$$

Evolutionless TMD distribution

TMD distribution on the null-evolution curve is scale-less

$$
\mu^{2} \frac{d F\left(x, b ; \mu, \zeta_{\mu}\right)}{d \mu^{2}}=0
$$

- TMD distribution is universal
- No questions on the scale determinations
- Technically simpler then PDFs

Drell-Yan at $Q=5-6 \mathrm{GeV}$

TMD evolution works!

Here:

- 3-loop evolution
- 2-loop coefficient function
- 2-loop matching
plots from [1706.01473]

Universitãt Regensburg

In TMD factorization the perturbative interpenetrates the non-perturbative

Perturbative

- Hard coefficient functions
- Anomalous dimensions
- Small-b matching (for each distribution)

Non-Perturbative

- 8 TMD parton distribution functionss $(\operatorname{spin} 1 / 2)$
- 2 TMD fragmentation functions (spin 0)
- Non-perturbative part of evolution kernel

	known	expected progress
H (universal)	3-loop [2010]	
γ_{F} (universal)	3-loop [2010]	
\mathcal{D} (universal)	3-loop [2016]	
f_{1} (unpol. PDF)	2-loop [2015]	
d_{1} (unpol.FF)	2-loop [2016]	
g_{1} (helicity)	1-loop [2017]	
h_{1} (transvercity)	1-loop [2017]	2-loop
$h_{1 T}^{\perp}($ pretzelocity	1-loop $(=0)[2017]$	2-loop
$f_{1}^{\perp}($ Sivers)	tree [2014]	1-loop
$d_{1 T}^{\perp}($ Collins)	unknown	tree
$h_{1}^{\perp}($ Boer-Mulders)	unknown	tree+1-loop
$g_{1 T}, h_{1 L}$ (worm-gear T,L)	unknown	tree

Universitãt Regensburg

There are 3 main processes to extract TMD distributions

Semi-inclusive deep inelastic scattering
$\mathrm{PDF} \times \mathrm{FF}$

Drell-Yan
PDF \times PDF

$$
e^{+} e^{-} \rightarrow 2 \text { hadrons }
$$

$$
\mathrm{FF} \times \mathrm{FF}
$$

4BABAR BESIII

Universitãt Regensburg

Main efforts are dedicated to unpolarized distributions
table by A.Bacchetta EICUG meeting

	Framework	HERMES	COMPASS	DY	Z production	N of points
KN 2006 hep-ph/0506225	NLL/NLO	X	X	\checkmark	\checkmark	98
Pavia 2013 arXiv:1309.3507	No evo	\checkmark	x	x	x	1538
Torino 2014 arXiv: 1312.6261	No evo	[separately]	[separately]	x	x	$\begin{gathered} 576[\mathrm{H}] \\ 6284[\mathrm{C}] \end{gathered}$
DEMS 2014 arXiv: 1407.3311	NNLL/NLO	X	x	\checkmark	\checkmark	223
EIKV 2014 arXiv: 1401.5078	NLL/LO	$1\left[x, Q^{2}\right]$ bin	$1\left[x, Q^{2}\right]$ bin	\checkmark	\checkmark	500 [?]
Pavia 2016 arXiv:1703.10157	NLL/LO	\checkmark	\checkmark	\checkmark	\checkmark	8059
SV 2017 arXiv:1706.01473	NNLL/ NNLO	x	x	\checkmark	\checkmark	309

There are no systematic extractions of polarized TMD distributions However, there are many independent fits

Electron-Ion collider

Dedicated QCD machine

- Proton/ion, polarized beam
- Large coverage of Q^{2} (moderate values)
- Large dedicated program for nucleon tomography

Electron-Ion collider

Dedicated QCD machine

- Proton/ion, polarized beam
- Large coverage of Q^{2} (moderate values)

Critical decision 0 autumn 2018

- Large dedicated program for nucleon tomography

Universităt Regensburg

