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Introduction

The modern factorization theorems have the following general structure

dσ

dX︸︷︷︸
cross−X

= H︸︷︷︸
Hard part

perturbative

× f1 ⊗ ...⊗ J2︸ ︷︷ ︸
Parton distributions
jet-functions, etc
Non-pertrubative

universal

× S︸︷︷︸
Soft factor(s)
perturbative ?

+ Some power
suppressed terms

This is a typical result of field mode separation (SCET)
Often, individual terms in the product are singular, and require "refactorization"

My talk is about factorization of soft factors and rapidity divergences.
(but not only)

This topic is not very well presented in the literature:
Not (very) important at high-energy, where fixed-order calculations dominate observables.
There is no commonly-known methods to approach the problem.

This problem is very important
It is a (missed) cornerstone of transverse momentum dependent (TMD) factorization,
and its derivatives.
It is crucial for our understanding of factorization, resummation, etc.
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Main conclusion of talk:
Rapidity divergences are renormalizable for Drell-Yan(-like) soft factors.

Outline of talk

Introductory example 1: Soft factor and rap.div. factorization for TMD Drell-Yan (DY)
Example 2: Soft factor and rap.div. factorization for Double-Drell-Yan (and multi DY)
([AV,1608.04920])
Singularities in soft factors
Proof of renormalization of rapidity divergences using conformal transformation
Some consequences: factorization for mutiDY, correspondence between SAD and RAD,
etc.
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Example I: TMD factorization
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TMD factorization

TMD factorization (Q2 � q2
T ) gives us the following expression

dσ

dQdy d2qT
∼
∫
d4x eiqx

∑
X

〈h1|Jµ(x)|X;h2〉〈X;h2|Jν(0)|h1〉

dσ

dQdy d2qT
∼
∫
d2bT e

−i(qb)TH(Q2) Φh1(z1, bT )S(bT )∆h2
(z2, bT ) + Y

TMD factorization

TMD PDF (singular)

TMD FF (singular)

TMD soft factor

power suppressed
terms

(very singular)

All components of factorization formula
contain rapidity divergences.

Within soft factor rapidity divergencs
entangle PDF and FF
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

Light-like vectors:

n2 = n̄2 = 0, (n · n̄) = 1

Wilson line (ray)

Φv(x) = P exp

(
ig

∫ ∞
0

dσvµAAµ (vσ + x)TA
)

Multiple divergences!
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

∫
dxdy D(x− y)

=

∫ ∞
0

dx+

∫ ∞
0

dy−
1

x+y−

=

∫ ∞
0

dx+

x+

∫ ∞
0

dy−

y−

= (UV + IR) (UV + IR)

Some people set it to zero.
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

∫
dxdy D(x− y)

=

∫ ∞
0

dx+

∫ ∞
0

dy−
1

(2x+y− + b2
T )

= IR at x, y →∞

However, it exactly cancels IR from the previous
diagram

Proved at all orders,
e.g.[Echevarria,Scimemi,AV,1511.05590]
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TMD soft factor

S(bT ) = 〈0|Tr
(
Φn(0T )Φ†n(bT )Φ−n(bT )Φ†−n̄(0T )

)
|0〉

∫
dxdy D(x− y)

=

∫ ∞
0

dx+

∫ ∞
0

dy−
1

(2x+y− + b2
T )

=

∫ ∞
0

dσ

σ︸ ︷︷ ︸
rap.div

∫ ∞
0

dLL

(2L2 + b2)︸ ︷︷ ︸
IR

Rapidity divergence is a special kind of
divergences, UV& IR

Does not cancel.
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δ-regularization + dimension regularization(ε > 0)

P exp

(
−ig

∫ ∞
0

dσnµAµ(nσ)

)
→ P exp

(
−ig

∫ ∞
0

dσnµAµ(nσ)e−δσ
)

Nice, and continent composition of regularizations, that clear separate divergences.

=

∫ ∞
0

dx+

∫ ∞
0

dy−
e−δ

+y−e−δ
−x+

(2x+y− + b2
T )1−ε

x+ → zL, y− → L/z

In this calculation scheme every divergece takes particular form

(
b2

4

)ε (
ln

(
δ+δ−

b2e2γE

4

)
− ψ(−ε)− γE

)
+
(
δ+δ−

)−ε
Γ2(−ε)
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Typical expression

Generally (say at NNLO) one expects the following form (finite ε, δ → 0)

S[2] =

IR︷ ︸︸ ︷
A1δδδ
−2ε +A2δδδ

−ε(b2)ε +(b2)2ε
(
A3ln2(δδδb2)︸ ︷︷ ︸

cancel in sum of diagram

+A4ln(δδδb2) +A5

)

Terms ∼ (δδδ)−ε cancel exactly at all orders (proved!) see e.g.[AV;1707.07606,app.A]
A3 cancels
This is checked at 2-loops (NNLO).

The most important property of SF is that its logarithm is linear in ln(δ+δ−)

S(bT ) = exp
(
A(bT , ε) ln(δ+δ−) +B(bT , ε)

)
It allows to split rapidity divergences and define individual TMDs.

Important note: the structure holds for arbitrary ε
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exp(A ln(δ+δ−) +B) = exp

(
A

2
ln((δ+)2ζ) +

B

2

)
exp

(
A

2
ln((δ−)2ζ−1) +

B

2

)

dσ ∼
∫
d2bT e

−i(qb)TH(Q2) Φh1(z1, bT )S(bT )∆h2
(z2, bT ) + Y

dσ ∼
∫
d2bT e

−i(qb)TH(Q2) F (z1, bT ; ζ+) D(z2, bT ; ζ−) + Y

spliting rapidity singularities
S(bT )→

√
S(bT ; ζ+)

√
S(bT ; ζ−)

TMD FF√
S∆h2

(regular)

TMD PDF√
SΦh1

(regular)

The extra "factorization" introduces
extra scale ζ.

And corresponded evolution equation

ζ
d

dζ
F =

A

2
F = −DF

Rapidity anomalous dimension (RAD)
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TMD evolution

TMD evolution is evolution in two-dimension plane(
d

d lnµ2

d
d ln ζ

)
F (x, b) =

(
γF
−D

)
F (x, b) =

(
UV part
rap.part

)
F (x, b)

Nowadays (at NNLO) the largest error comes from the evolution [I.Scimemi,AV,1706.01473]
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In the following I will prove this factorization.

Is it important? Yes

It is good to know that the factorization exists.
Fundamental for lower-energy observables, e.g. SIDIS.
Here the statement looks trivial, but in other cases it is very non-trivial. (next slides)
Interesting additional conclusion on related objects.
The proof would give criterion which processes are factorizable

Example II: Double-Drell-Yan scattering
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pictures from [1510.08696]

Double Drell-Yan scattering

Experimental status is doubtful
Collinear part of factorization is proved [Diehl,et
al,1510.08696]
In many aspects similar to TMD factorization
The same problem of rapidity factorization, but
enchanted by matrix structure

dσ

dX
∼
∫

[dbT e
−i(qb)T ]H1(Q2

1)H2(Q2
2) FAh1(z1,2, b1,2,3,4)SAB(b1,2,3,4)F̄Bh2(z1,2, b1,2,3,4) + Y

DPD (singular)

DPD soft factor

power suppressed
terms

(very singular)

Structure is similar to TMD Drell-Yan
but now it contains

COLOR
The soft factor is a matrix
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Color structure makes a lot of difference

FAh1S
ABF̄Bh2

singlets−−−−−→
(
F1, F8

)( S11 S18

S81 S88

)(
F̄1

F̄8

)

Soft-factors Sij are sum of Wilson loops and double Wilson loops (all possible
connections).
Soft-factors are non-zero even in the integrated case.
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Evaluation at NNLO [AV,1608.04920]

Brute force evaluation would lead a lot of (similar) diagrams.
The better way is to compute the generating function [AV, 1406.6253, 1501.03316]

All non-trivial three-Wilson line interactions cancel!
The final result expresses via TMD soft factor only!

TMD SF : lnSTMD = σ(b)

Single loop SF : lnS[4] = σ(b12)−σ(b13)+σ(b14)+σ(b23)−σ(b24)+σ(b34)

+
CA
4CF

(σ(b13)−σ(b14)−σ(b23)+σ(b24))(σ(b12)−σ(b13)−σ(b24)+σ(b34))

Double loop SF : lnS[1] = σ(b14)+σ(b23)+ 1
2

(
CA
4CF

−1
)
(σ(b12)−σ(b13)−σ(b24)+σ(b34))2

This structure is independent on regularization procedure!
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REMINDER: TMD factorization

STMD = eσ(b) = eσ
+(b)eσ

−(b), σ± =
A

2
ln((δ+)2ζ±1) +

B

2

Matrix factorization of rapidity divergences

Using the decomposition above, inserting it into DPD SF we obtain matrix relation

SDPD = sT (ln(δ+)) · s(ln(δ−))

s = exp

[(
A11(b1,2,3,4) A18(b1,2,3,4)
A81(b1,2,3,4) A88(b1,2,3,4)

)
ln(δ) +

(
B11(b1,2,3,4) B18(b1,2,3,4)
B81(b1,2,3,4) B88(b1,2,3,4)

)]
Aij and Bij are rather complicated non-linear compositions of TMD’s A and B
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Finalizing DPD factorization

dσ

dX
∼
∫

[dbT e
−i(qb)T ]H1(Q2

1)H2(Q2
2)
(
F1, F8

)( S11 S18

S81 S88

)(
F̄1

F̄8

)
+ Y

dσ

dX
∼
∫

[dbT e
−i(qb)T ] e−i(qb)TH1(Q2

1)H2(Q2
2) F (z1,2, b1,2,3,4; ζ+)F̄ (z1,2, b1,2,3,4; ζ−) + Y

spliting rapidity singularities
S(b1,2,3,4)→ sT (b1,2,3,4; ζ+)s(b1,2,3,4; ζ−)

DPD
sFh2

(regular)

DPD(
sFh1

)T
(regular)

Matrix rapidity evolution

dF (z1,2,b1,2,3,4; ζ, µ)

d ln ζ
= −F (z1,2,b1,2,3,4; ζ, µ)D(b1,2,3,4, µ)

where D is matrix build (linearly) of TMD rapidity anomalous dimensions. E.g.

D18 =
D(b12)−D(b13)−D(b24) +D(b34)√

N2
c − 1
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Let’s look at multi-parton scattering

Just as double-parton, but multi..(four WL’s → arbitrary number WL’s)
Too many color-singlets, better to work with explicit color indices (color-multi-matrix)

Σ(a1...aN );(d1...dN )(b1, ...,bN ) = Σ(b1,..,N )

Σ({b}) = 〈0|T{[Φ−nΦ†−n̄](bN ) . . . [Φ−nΦ†−n̄](b1)}|0〉

Color-matrix notation

All color flow in the same direction
i’th WL has generator Ti

In total the soft factor is color-neutral∑
i

Ti = 0.

Color-neutrality → gauge invariance +
cancellation IR singularities
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Σ({b}) = 〈0|T{[Φ−nΦ†−n̄](bN ) . . . [Φ−nΦ†−n̄](b1)}|0〉

Result at NNLO is amazingly simple

Σ(b1,..,N ) = exp

−∑
i<j

TAi TAj σ(bij) +O(a3
s)


TAi TAj = "dipole"

O(a3
s) contains also "color-multipole" terms

Rapidity factorization for dipole part is
straightforward (assuming TMD factorization)
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Rapidity divergence renormalization theorem

These all are parts of general picture, and could be described by single
factorization/renormalization theorem.

Rapidity divergences associated with different directions in the MPS soft factor could
be factorized from each other. At any finite order of perturbation theory there exists
the "rapidity divergence renormalization factor" Rn, which contains only rapidity
diveences associated with the direction n, such that the combination

ΣR({b}, ν+, ν−) = Rn({b}, ν+)Σ({b})R†n̄({b}, ν−)

is free of rapidity divergences.

Implicitly, it has been expected for long time [Chiu,Jain,Neill,Rothstein,1104.0881]
It is final block of the TMD factorization theorem (and also finalizes factorization for
Double-DY)
It has several non-trivial consequences.
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Rapidity divergence renormalization theorem

In next slides I am going to sketch the proof.

Typically, such theorems are proved by considering singularities of Feynman diagrams.
I will present a completely new approach (to my best knowledge).
The approach could appear more interesting and important then the theorem it self.
I will skip a lot of details, please, ask questions or look into [AV;1707.07606]

General picture of proof

Isolate the spatial area of operator which results into rapidity divergences.
Invent a (conformal) transformation which map this area to a point (i.e. rapidity
divergences to UV divergences)
Using this transformation proof the theorem in CFT
Generalize to QCD, using iteration procedure and restoration of conformal invariance at
critical point.

A.Vladimirov RdRt January 26, 2018 19 / 41



Rapidity divergence renormalization theorem

In next slides I am going to sketch the proof.

Typically, such theorems are proved by considering singularities of Feynman diagrams.
I will present a completely new approach (to my best knowledge).
The approach could appear more interesting and important then the theorem it self.
I will skip a lot of details, please, ask questions or look into [AV;1707.07606]

General picture of proof

Isolate the spatial area of operator which results into rapidity divergences.
Invent a (conformal) transformation which map this area to a point (i.e. rapidity
divergences to UV divergences)
Using this transformation proof the theorem in CFT
Generalize to QCD, using iteration procedure and restoration of conformal invariance at
critical point.

A.Vladimirov RdRt January 26, 2018 19 / 41



Divergences in coordinate space

Classification of divergences in coordinate space

Ultraviolet divergences (UV)

Localisation of fields in vicinity of a point

x2 → 0

WARNING: depends on gauge fixation condition
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Divergences in coordinate space

Classification of divergences in coordinate space

Mass divergences (IR)

Localisation of fields at distant sphere

x2 →∞

WARNING: depends on gauge fixation condition
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Divergences in coordinate space

Classification of divergences in coordinate space

Collinear divergences (UV)

Localisation of fields in vicinity of a line
see better definition [Erdogan,Sterman,1411.4588]

WARNING: depends on gauge fixation condition
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Divergences in coordinate space

Classification of divergences in coordinate space

Ultraviolet divergences (UV)

Localisation of fields in vicinity of a distant transverse plane
see better definition [AV,1707.07606]

WARNING: depends on gauge fixation condition
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Conformal transformation

Important lessons

The rapidity divergences are associated with planes! Not with directions.
The planes defined unambiguously. However, in (TMD-like) soft factor we have two
light-like directions, i.e. two planes and two independent types of rapidity divergences.
The requirement of non-intersection of these planes defines them unambiguously.
Counting rules are just alike UV divergence counting rules.

Rapidity divergences associated with transverse planes (or better to say with the layer
between the transverse plane and infinity). Let us construct a conformal transforma-
tion which maps it to the point (to a sphere).
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Conformal transformation

Conformal-stereographic transformation

Cn̄ : {x+, x−, x⊥} → {
−1

2a

1

λ+ 2ax+
, x− +

ax2
⊥

λ+ 2ax+
,

x⊥
λ+ 2ax+

}

Translation – special conformal transformation (along n) – Translation
a and λ are free parameters
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Conformal transformation

Composition of two conformal-stereographic transformations

Cnn̄ = CnCn̄ = Cn̄Cn
With the special choice of parameters

aλ < 0, āλ̄ < 0, (aā)2 <
1

2ρ2
T

ρ2
T>max{b2i },

any DY-like soft factor transforms to a compact object.

Σ(b) Ω(v)
Cnn̄
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Conformal transformation

In conformal QFT rapidity divergences equivalent to UV divergences

The UV renormalization imposes rapidity divergence renormalization

There are also UV renormalization factors in cusps (we omit them for a moment)

R(b)Σ(b)R†(b) Z(v)Ω(v)Z†(v)
Cnn̄

finite finite
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Conformal transformation

RDRT in conformal theory

In a conformal field theory rapidity divergences can be removed (renor-
malized) by a multiplicative factor.

C−1
nn̄ (Z({v}, µ)) = Rn({b}, ν+)

Rapidity anomalous dimension (RAD)

D({b}) =
1

2
R−1
n ({b}, ν+)ν+ d

dν+
Rn({b}, ν+),

In CSS notation it is −K, in [Becher,Neubert] Fqq̄ , in SCET literature γν .

(In CFT) DY-like Soft factors expresses as

Σ({b}, δ+, δ−) = e2D({b}) ln(δ+/ν+)

finite︷ ︸︸ ︷
Σ0({b}, ν2) e2D

†({b}) ln(δ−/ν−),
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From CFT to QCD

From conformal theory to QCD

QCD at the critical point

QCD is conformal in 4− 2ε∗ dimensions

β(ε∗) = 0, ⇒ ε∗ = −asβ0 − a2
sβ1 − ....

It is very useful trick, allows to restore "conformal-violating" terms, see
e.g.[Braun,Manashov,1306.5644]

Thus, at 4− 2ε∗ dimensions, the rapidity renormalization theorem
works.
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From CFT to QCD

RTRD works at any finite order of QCD

Proof by induction
Important input: Counting of rap.div. is independent on number of dimensions
Important input: At 1-loop QCD is conformal = RTRD hold.
(1) All Leading divergences cancel by R.
(2) Make shift ε∗ → ε∗ + β0as.
(3) Modify R such that next-to-leading divegences cancel (it can be done perturbatively,
thanks to as)

Repeat (2-3) N times, and got renormalization at aN+1
s order.

Soft factor has the form

Σ({b}, δ+, δ−) = e2D({b}) ln(δ+/ν+)

finite︷ ︸︸ ︷
Σ0({b}, ν2) e2D

†({b}) ln(δ−/ν−),

DQCD 6= DCFT
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From CFT to QCD

Example then it does not work (no factorization?)

There are talks about "dipole-like" TMD distributions that could appear in processes like
pp→ hX e.g. [Boer,et al,1607.01654]

However, it is straightforward to show that the factorization is necessarily broken (or has not
closed form)

Cnn̄

To have factorization
separate R factors

are needed

In the tranformed SF
there is a single
singular point

The renormalization of dipole recouple colors → extra gauge link → ala BK equation.
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From CFT to QCD

Consequences
Factorization for multi-Drell-Yan process
Generalized CSS equation
Correspondence between soft and rapidity anomalous dimensions
Constraints of soft anomalous dimension.
Universality of DY and SIDIS TMD soft factors
Many others ... (in progress)
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Definition of multiPDs

Factorization of multi-parton scattering

0 1 2 3 4 5 6 7 8 9 10 11
−2

−1

0

1

2

3

4

dσ

dX
∼
∏
i

Hff̄
i

(
Qi

µ

)∫
dbi e

−i(qibi) ¯̃Ff̄ ({x̄}, {b}, µ)Σ({b})F̃f ({x}, {b}, µ) + Y

dσ

dX
∼
∏
i

Hff̄
i

(
Qi

µ

)∫
dbi e

−i(qibi) F̄f̄ ({x̄}, {b}, µ, ν−)Σ−1
0 ({b}, ν2)Ff ({x}, {b}, µ, ν+)

Ff ({x}, {b}, ν+) =

Σ0({b}, ν2)R†−1({b}, ν−)F̃f ({x}, {b})

Finite multiPD

F̃
{a}

({x}, {b}) =

∫
{d3

yi}〈h|ξ
a1
1 (y1)...ξ

aN
N

(yN )|h〉|
y
+
i

=0

Σ({b}) = 〈0|(Φ−nΦ−n̄)(b1)...(Φ−nΦ−n̄)(bN )|0〉

Σ({b}) = R−1
n ({b}, ν+)Σ0(ν2)R†−1

n̄ ({b}, ν−)

RTRD
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Definition of multiPDs

Finite multiPD

The definition of collinear matrix element include zero-bin subtraction

F̃ ({x}, {b}, µ, δ−) =

z.b.︷ ︸︸ ︷
Σ−1(µ; δ+, δ−)×

unsubtracted︷ ︸︸ ︷
F̃us({x}, {b}, µ, δ+)

Zero-bin partially cancel rapidity renormalization

F ({x}, {b}, ν+) = Σ0( ν2︸︷︷︸
=ν+ν−

)R†−1
n̄ ({b}, ν−)× F̃{f}←h({x}, {b}, δ−)

= Rn({b}, ν+)× F̃us({x}, {b}, δ+)

= e−2D({b}) ln(δ+/ν+) × F̃us({x}, {b}, δ+)︸ ︷︷ ︸
δ−finite

The rapidity evolution is matrix evolution

ν+ d

dν+
F ({x}, {b}, µ, ν+) =

1

2
D({b}, µ)× F ({x}, {b}, µ, ν+).
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Definition of multiPDs

Boost invariant variables

We define boost invariant variables

ζ = 2(p+)2 ν
−

ν+
, ζ̄ = 2(p−)2 ν

+

ν−
, ζζ̄ = (2p+p−)2

In terms of these variables

ζ
d

dζ
F{f}←h({x}, {b}, µ, ζ, ν2) = −D{f}({b}, µ)× F{f}←h({x}, {b}, µ, ζ, ν2). (1)

ν2 is some IR scale.
Generalized CS equation

µ2 d

dµ2
D({b}, µ) =

1

4

N∑
i=1

ΓicuspI.
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Definition of multiPDs

Scheme dependence

We can add arbitrary finite terms to the rapidity redefinition

F ({x}, {b}, ζ, ν2)→ S× F ({x}, {b}, ζ, ν2).

It is equivalent to the scheme dependence for UV renormalization.

Natural definition

The soft factor remnant Σ0 can be absorbed to the definition of multiPD:

S(b, µ, ν2)Σ0({b}, µ, ν2)ST (b, µ, ν2) = I.

In the TMD case it leads to the standard definition

F (x, b, µ, ζ) =

√
ΣTMD

(
b,

δ+

√
2p+

√
ζ,

δ+

√
2p+

√
ζ

)
F̃ (x, b, δ+).
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SAD/RAD correspondence

Soft/rapidity anomalous dimension correspondence

The equivalence (under conformal transformation) between Z and R implies the equality
between corresponding anomalous dimensions

γs({v}) = 2D({b})

It has been observed in [Li,Zhu,1604.01404].

UV anomalous dimension independent on ε
Rapidity anomalous dimension does depend on ε
At ε∗ conformal symmetry of QCD is restored

In QCD

γγγs({v}) = 2D({b}, ε∗)

Exact relation!
Connects different regimes of QCD

→ Lets test it.
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SAD/RAD correspondence

γγγs({v}) = 2D({b}, ε∗)

How to use it?

Physical value is D({b}, 0)

ε∗ = 0− asβ0 − a2
sβ1 − a3

sβ2 − ....
We can compare order by order in PT

D1({b}) =
1

2
γγγ1({v}),

D2({b}) =
1

2
γγγ2({v}) + β0D′1({b}),

D3({b}) =
1

2
γγγ3({v}) + β0D′2({b}) + β1D′1({b})−

β2
0

2
D′′1 ({b}),
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SAD/RAD correspondence

TMD rapidity anomalous dimension

N = 2, no matrix structure, BBB = b2

4
, L = ln

(
BBBµ2

e−2γE

)
↔ ln

(
v12µ

2

ν2

)

γs({v}) = 2D({b}, ε∗)

γ
(1)
s =L+0

γ
(2)
s =[( 67

9
−2ζ2)CA− 20

18
Nf ]L+

(28ζ3+...)CA+( 112
27
− 4

3
ζ2)Nf

γ
(3)
s =[ 245

3
C2
A+...]L+

+(−192ζ5C
2
A+...+ 2080

729
N2
f )

−2(BBBεΓ(−ε)+ 1
ε )=D(1)

BBB2εΓ2(−ε)
(
CA(2ψ−2ε−2ψ−ε+ψε+γE)=D(2)

+ 1−ε
(1−2ε)(3−2ε)

(
3(4−3ε)

2ε
CA−Nf

))
+BBBε

Γ(−ε)
ε

β0+
β0
2ε2
−Γ1

2ε

[Echevarria,Scimemi,AV,1511.05590]

asγ
(1)
s

+ a2
sγ

(2)
s

+ a3
sγ

(3)
s

asD(1)

+ a2
sD(2)

+ a3
s?D(3)

NLO NLO

N2LO

N3LO

N2LO

Expand in as

as

(
ln

(
b2µ2

ν2

)
+ 0

)
= as

(
ln

(
b2µ2

4e−2γE

)
+ 0

)
Obvious relation, QCD is conformal at leading order.

ν2 = 4e−2γE

..+ a2
s

(
Γ2L+ γ(2)

)
= ..+ 2a2

s

(
D(2) − 2β0(L2 + ζ2)

)
We found 2-loop rapidity anomalous dimension

D(2)
L=0 =

(
404

27
− 14ζ3

)
CA −

112

27

Nf

2

..+ a3
s

(
Γ3L+ γ(3)

)
= ..+ 2a2

s

[
D(3) − 2β2

0
3
L3 −

(
β0Γ1

2
+ β1

)
L2 + β0(γ1 − 2β0ζ2)L

−β0Γ1
ζ2
4
− ζ2β1 +

2β2
0

3

(
ζ3 − 82

9

)
+ 26β0CA

(
ζ4 − 8

27

) ]
We found 3-loop rapidity anomalous dimension

D(3)
L=0 = C2

A

(
297029

1458
+

88

3
ζ2ζ3 + ...+ 96ζ5

)
+ ...+ CFNf

(
−152

9
ζ3 − 8ζ4 +

11711

54

)
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SAD/RAD correspondence

D(3)
L=0 = −

C2
A

2

(
12328

27
ζ3 −

88

3
ζ2ζ3 − 192ζ5 −

297029

729
+

6392

81
ζ2 +

154

3
ζ4

)
−
CANf

2

(
−

904

27
ζ3 +

62626

729
−

824

81
ζ2 +

20

3
ζ4

)
−

CFNf

2

(
−

304

9
ζ3 +

1711

27
− 16ζ4

)
−
N2
f

2

(
−

32

9
ζ3 −

1856

729

)

Coincides with the one calculated directly [Li,Zhu,1604.01404]
The logarithmic structure of rapidity anomalous dimension also restored

µ2 d

dµ2
D(as(µ),b) =

Γcusp(as(µ))

2

vs.

ν2 d

dν2
γs(ν, v) =

Γcusp

2

UV anomalous dimensions independent on ε. UV anomalous dimension of rapidity
anomalous dimension also.
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SAD/RAD correspondence

Quadrupole part of SAD

γγγs({v}) = −
1

2

∑
[i,j]

TAi TAj γdipole(vi · vj)−
∑

[i,j,k,l]

ifACEifEBDTAi TBj TCk TDl Fijkl

−
∑

[i,j,k]

T
{AB}
i TCj TDk if

ACEifEBDC +O(a4
s),

Quadrupole part has been calculated in [Almelid,Duhr,Gardi;1507.00047]

C̃ = a3
s

(
ζ2ζ3 +

ζ5

2

)
+O(a4

s),

F̃ijkl({b}) = 8a3
sF(ρ̃ikjl, ρ̃iljk) +O(a4

s),

Quadrupole part of RAD

Color structures are not affected by ε∗

Quadrupole contribution depends only on conformal ratios

ρijkl =
(vi · vj)(vk · vl)
(vi · vk)(vj · vl)

↔ ρ̃ijkl =
(bi − bj)2(bk − bl)2

(bi − bk)2(bj − bl)2
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Other consequences

The correspondence between SAD and RAD can be used also to constraint the SAD.
It seems that structure of RAD (diagrammatically) is simpler.

Color-structure of soft anomalous dimension

As a consequence of Lorentz invariance one has

Σ({b}) = Σ†({b})

It implies that RAD has only even color-multipoles

D({b}) =
∞∑
n=2

n∈even

N∑
i1,...,in=1

{TA1
i1
...TAnin }D

n;i1...in
A1...An

({v}).

In turn, γγγs({v}) = 2D({b}, ε∗), SAD has only even color-multipoles

γγγs({v}) =
∞∑
n=2

n∈even

N∑
i1,...,in=1

{TA1
i1
...TAnin }γ

n;i1...in
A1...An

({v}).

Absence of tri-pole is known [Aybat, et al,0607309;Dixon, et al, 0910.3653]
Quadrupole arises at 3-loops
Sextupole arises at 5-loops
etc.

A.Vladimirov RdRt January 26, 2018 39 / 41



Other consequences

The correspondence between SAD and RAD can be used also to constraint the SAD.
It seems that structure of RAD (diagrammatically) is simpler.

Color-structure of soft anomalous dimension

As a consequence of Lorentz invariance one has

Σ({b}) = Σ†({b})

It implies that RAD has only even color-multipoles

D({b}) =
∞∑
n=2

n∈even

N∑
i1,...,in=1

{TA1
i1
...TAnin }D

n;i1...in
A1...An

({v}).

In turn, γγγs({v}) = 2D({b}, ε∗), SAD has only even color-multipoles

γγγs({v}) =
∞∑
n=2

n∈even

N∑
i1,...,in=1

{TA1
i1
...TAnin }γ

n;i1...in
A1...An

({v}).

Absence of tri-pole is known [Aybat, et al,0607309;Dixon, et al, 0910.3653]
Quadrupole arises at 3-loops
Sextupole arises at 5-loops
etc.

A.Vladimirov RdRt January 26, 2018 39 / 41



Other consequences

Conclusion

I believe that there are other (not yet explored) consequences.

done TMD soft factor for SIDIS = TMD soft factor for DY (universality)
Self-duality of TMD soft factor
Possible lattice applications

Limitations

T-ordered operator
Unrestricted phase space

ε∗ method is a very powerful tool

3-loop evolution kernel for a twist-2 string operator (utilizing 3-loop DGLAP anomalous
dimension) [Braun, et al,]
BK/BMS relation at sub-leading orders [S.Caron-Huot,talk at HEP]
Matching coefficient functions for TMD operators
ε∗ can be used as a summation prescription
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Other consequences

Conclusion

The rapidity divergences are alike UV divergences (in CFT)
Renormalization theorem for rapidity divergences
RAD/SAD correspondence (checked up to three-loop order for N=2 case (TMD),
checked up to two-loop order for general case)
Three-loop general rapidity anomalous dimension, and all order constraints on SAD
Factorization for double-Drell-Yan (multi-Drell-Yan)
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