Transverse momentum dependent (TMD) factorization in perturbation theory

Alexey A. Vladimirov

Institut für Theoretische Physik Universität Regensburg

CR

March 23, 2018

イロト イヨト イヨト イヨト

Universität Regensburg

1 / 16

A.Vladimirov

TMD factorization

Introduction

TMD factorization is a complicated composition of perturbative and non-perturbative functions.

$$\frac{d\sigma}{dX} \simeq \int db e^{ibq_T} H(Q) \ \{ R(Q \to (\mu_i, \zeta_i)) \}^2 \ F_1(x, b, \mu_i, \zeta_i) F_2(x, b, \mu_i, \zeta_i) \}$$

TMD factorization

Introduction

TMD factorization is a complicated composition of perturbative and non-perturbative functions.

$$\frac{d\sigma}{dX} \simeq \int db e^{ibq_T} \frac{H(Q)}{P} \{R(Q \to (\mu_i, \zeta_i))\}^2 F_1(x, b, \mu_i, \zeta_i) F_2(x, b, \mu_i, \zeta_i)$$

Hard coef.
Perturbative

Introduction

TMD factorization is a complicated composition of perturbative and non-perturbative functions.

2 / 16

March 23, 2018

TMD factorization is a complicated composition of perturbative and non-perturbative functions.

TMD factorization is a complicated composition of perturbative and non-perturbative functions.

TMD factorization

March 23, 2018 2

2 / 16

egensburg

Perturbative input is essential for presice phenomenology. All perturbative inputs are important.

High energy

Perturbative input is essential for presice phenomenology. All perturbative inputs are important.

Conlusion

Perturbation input is important at both low and high energies. The higher order – the better.

Universität Regensburg

(ロ) (日) (日) (日) (日)

PT in TMD

There was significant progress in the perturbative calculus

- Schemes of perturbative calculation were consistently formulated
- 3-loop TMD evolution [Li,Zhu,1604.01404][AV,1610.05791]
- All TMD distributions (tw-2) were recalculated in the same scheme [Scimemi,AV,1702.06558][Buffing,Diehl,Kasemets,1708.03528].
- (Rapidity divergences part) of TMD factorization was proven [AV,1707.07606].
- More to come soon.

		known	in this talk		
	H (universal)	3-loop [2010]			
-	γ_F (universal)	3-loop [2010]			
	\mathcal{D} (universal)	3-loop [2016]	\checkmark	_	
-	$f_1(unpol. PDF)$	2-loop [2015]			
	$d_1(\text{unpol.FF})$	2-loop [2016]			
	g_1 (helicity)	1-loop [2013]			
	h_1 (transvercity)	1-loop [2013]	\checkmark		
	h_{1T}^{\perp} (pretzelocity)	1-loop (=0) [2017]	\checkmark		
	$f_{1T}^{\perp}(\text{Sivers})$? tree [2014]	\checkmark		
	d_{1T}^{\perp} (Collins)	unknown	\checkmark		
	h_1^{\perp} (Boer-Mulders)	unknown	\checkmark	Universität	Pogonshurg
	g_{1T}, h_{1L} (worm-gear T,L)	unknown < 🗖 🕨		≣ ► Ē	negensburg
Vlad	imiroy TMD	factorization	March 2	23 2018	4 / 16

TMD factorization

TMD factorization is two successive factorizations **The first:** collinear factorization [Collins' book], [SCET] **The second:** rapidity divergences factorization [AV,1707.07606]

$$\frac{d\sigma}{dX} \simeq H(Q) \int \frac{d^2b}{(2\pi)^2} e^{i(bk)_T} f(x_A, b) \frac{S(b)}{S(b)} f(x_B, b)$$

Soft factor is vacuum matrix element of a Wilson loop.

 $S(b) = \langle 0 | [0, \pm \infty n] [\pm \infty n + \mathbf{b}, \mathbf{b}] [\mathbf{b}, \pm \infty \bar{n} + \mathbf{b}] [\pm \infty \bar{n}, 0] | 0 \rangle$

7 / 16

Soft factor is vacuum matrix element of a Wilson loop.

 $S(b) = \langle 0 | [0, \pm \infty n] [\pm \infty n + \mathbf{b}, \mathbf{b}] [\mathbf{b}, \pm \infty \bar{n} + \mathbf{b}] [\pm \infty \bar{n}, 0] | 0 \rangle$

Universität Regensburg

There is a geometrical transformation that turns rapidity divergence to UV

$$\mathcal{C}_{\bar{n}}: \{x^+, x^-, x_{\perp}\} \to \{\frac{-1}{2a} \frac{1}{\lambda + 2ax^+}, x^- + \frac{ax_{\perp}^2}{\lambda + 2ax^+}, \frac{x_{\perp}}{\lambda + 2ax^+}\}$$

• The UV renormalization imposes rapidity divergence renormalization

Rapidity divergence renormalization theorem

Rapidity divergences for TMD soft factor can be renormalized for each direction separately (also holds for MPS).

- Immediate in conformal field theory
- Proof by iteration in QCD (1-loop in conformal)

Soft/Rapidity anomalous dimension correspondence

Exact relation

$$\gamma_{\text{soft}}(v) = 2\mathcal{D}(\mathbf{b}, \epsilon^*)$$

How to use it?

- Physical value is $\mathbf{D}({\mathbf{b}}, 0)$
- $\epsilon^* = 0 a_s \beta_0 a_s^2 \beta_1 a_s^3 \beta_2 \dots$
- We can compare order by order in PT

$$\begin{aligned} \mathbf{D}_{1}(\{b\}) &= \frac{1}{2} \boldsymbol{\gamma}_{1}(\{v\}), & \text{Always gain one order!} \\ \mathbf{D}_{2}(\{b\}) &= \frac{1}{2} \boldsymbol{\gamma}_{2}(\{v\}) + \beta_{0} \mathbf{D}_{1}'(\{b\}), \\ \mathbf{D}_{3}(\{b\}) &= \frac{1}{2} \boldsymbol{\gamma}_{3}(\{v\}) + \beta_{0} \mathbf{D}_{2}'(\{b\}) + \beta_{1} \mathbf{D}_{1}'(\{b\}) - \frac{\beta_{0}^{2}}{2} \mathbf{D}_{1}''(\{b\}), \end{aligned}$$

Universität Regensburg

9 / 16

æ

March 23, 2018

イロト イヨト イヨト イヨト

A.Vladimirov

This simple exercise gives 3-loop rapidity anomalous dimension.

$$\mathcal{D}_{L=0}^{(3)} = -\frac{C_A^2}{2} \left(\frac{12328}{27} \zeta_3 - \frac{88}{3} \zeta_2 \zeta_3 - 192 \zeta_5 - \frac{297029}{729} + \frac{6392}{81} \zeta_2 + \frac{154}{3} \zeta_4 \right) \\ -\frac{C_A N_f}{2} \left(-\frac{904}{27} \zeta_3 + \frac{62626}{729} - \frac{824}{81} \zeta_2 + \frac{20}{3} \zeta_4 \right) - \frac{C_F N_f}{2} \left(-\frac{304}{9} \zeta_3 + \frac{1711}{27} - 16\zeta_4 \right) - \frac{N_f^2}{2} \left(-\frac{32}{9} \zeta_3 - \frac{1856}{729} \right)$$

• Coincides with the one calculated directly [Li,Zhu,1604.01404]

A.Vladimirov

OPE at small values of \boldsymbol{b}

 $F(x,b) = C(x,b;\mu_{\rm OPE}) \otimes f(x,\mu_{\rm OPE}) + \dots$

Universität Regensburg イロシィラシィミシィミン ミークへで March 23, 2018 11 / 16

OPE at small values of b

 $F(x,b) = C(x,b;\mu_{\text{OPE}}) \otimes f(x,\mu_{\text{OPE}}) + \dots$

○ Leading twist-2

- $f_1 \rightarrow \text{Unpol.PDF}$ (2-loop)
- $d_1 \rightarrow \text{Unpol.FF}$ (2-loop)
- $g_1 \rightarrow \text{helicity PDF (1-loop)}$
- $h_1 \rightarrow \text{transvercity PDF}$ (1-loop)
- $h_{1T}^{\perp} \rightarrow \text{transversity PDF}(1\text{-loop})$

イロト イヨト イヨト イヨト

Universität Regensburg

æ

OPE at small values of \boldsymbol{b}

$$F(x,b) = C(x,b;\mu_{\rm OPE}) \otimes f(x,\mu_{\rm OPE}) + \dots$$

臣

・ロト ・回ト ・モト ・モト

OPE at small values of b $F(x,b) = C(x,b;\mu_{OPE}) \otimes f(x,\mu_{OPE}) + \dots$ ○ Leading twist-2

○ Leading twist-3

O Leading twist-2 and 3

• $h_{1L}^{\perp} \rightarrow ?? + WW(helicity PDF)$

• $g_{1T} \rightarrow ??+WW(transvercity PDF)$

WW part can be found in [Kanazawa,et al;1512.07233]

イロト イヨト イヨト イヨト

Universität Regensburg

New 2-loop results

$$\Phi_{q \leftarrow h}^{[i\sigma^{\alpha+}\gamma_5]}(x,\mathbf{b}) = s_T^{\alpha}h_1(x,\mathbf{b}) + 2\left(\frac{g_T^{\alpha\mu}}{2} + \frac{b^{\alpha}b^{\mu}}{\mathbf{b}^2}\right)s_{T\mu}h_{1T}^{\perp}(x,\mathbf{b}) + b_{\mu}(\ldots)^{\alpha\mu}$$

A.Vladimirov

TMD factorization

March 23, 2018 12 / 16

New 2-loop results

$$\Phi_{q \leftarrow h}^{[i\sigma^{\alpha+}\gamma_5]}(x,\mathbf{b}) = s_T^{\alpha} \underbrace{h_1(x,\mathbf{b})}_{P} + 2\left(\frac{g_T^{\alpha\mu}}{2} + \frac{b^{\alpha}b^{\mu}}{\mathbf{b}^2}\right) s_{T\mu} h_{1T}^{\perp}(x,\mathbf{b}) + b_{\mu}(...)^{\alpha\mu}$$
transvercity TMDPDF
$$\bigcup_{\substack{\mathbf{b} \\ \text{transvercity PDF} \\ h_1(x,\mathbf{b}) = C \otimes \delta f(x) + \mathbf{b}^2 ...}$$
tree+1loop

12 / 16

March 23, 2018

New 2-loop results

TMD factorization

New 2-loop results

$$\Phi_{q \leftarrow h}^{[i\sigma^{\alpha+}\gamma_{5}]}(x,\mathbf{b}) = s_{T}^{\alpha}h_{1}(x,\mathbf{b}) + 2\left(\frac{g_{T}^{\alpha\mu}}{2} + \frac{b^{\alpha}b^{\mu}}{\mathbf{b}^{2}}\right)s_{T\mu}h_{1T}^{\perp}(x,\mathbf{b}) + \frac{b_{\mu}(...)^{\alpha\mu}}{\mathbf{b}^{1}}$$
transvercity TMDPDF
$$\downarrow$$
transvercity PDF
$$h_{1}(x,\mathbf{b}) = C \otimes \delta f(x) + \mathbf{b}^{2}...$$
tree+1loop
$$Preliminar$$

$$C_{T}^{\perp}(x,\mathbf{b}) = -4a_{s}^{2}\left[4\left(C_{F}^{2} - \frac{C_{F}C_{A}}{2}\right)\left(\bar{x}\ln\bar{x} + x\ln x - \frac{3}{2}\bar{x}\right) - C_{F}^{2}\bar{x}(x - \mu)\right]$$

A.Vladimirov

TMD factorization

New 2-loop results

$$\Phi_{q \leftarrow h}^{[i\sigma^{\alpha+}\gamma_{5}]}(x,\mathbf{b}) = s_{T}^{\alpha}h_{1}(x,\mathbf{b}) + 2\left(\frac{g_{T}^{\alpha\mu}}{2} + \frac{b^{\alpha}b^{\mu}}{b^{2}}\right)s_{T\mu}h_{1T}^{+}(x,\mathbf{b}) + b_{\mu}(...)^{\alpha\mu}$$
interasting TMDPDF
interastive T

Twist-3

A.Vladimirov

TMD factorization

Twist-3

Twist-3

Leading matching of all polarized distributions at twist-3

$$\begin{array}{ll} \mbox{Collins} & f_{1T}^{\perp}(x,\mathbf{b}) = +(-)\pi \, T(x,x) + O(\mathbf{b}^2) \\ \mbox{Boer-Mulders} & h_1^{\perp}(x,\mathbf{b}) = -(+)\pi \, \delta T_{\epsilon}(x,x) + O(\mathbf{b}^2) \\ \mbox{Worm-gear T} & g_{1T}^{\perp}(x,\mathbf{b}) = 2 \int \frac{dx_2}{x_2^2} \int_{x-x_2}^x du \Delta T(u,u+x_2) \\ & -\frac{1}{2} \int du \frac{u}{|u|} \left(g_1(u) - g_T(u)\right) + O(\mathbf{b}^2) \\ \mbox{Worm-gear L} & h_{1L}^{\perp}(x,\mathbf{b}) = -2 \int \frac{dx_2}{x_2^2} \int_{x-x_2}^x du \delta T_g(u,u+x_2) \\ & +\frac{1}{2} \int du \frac{u}{|u|} \left(h_1(u) - h_L(u)\right) + O(\mathbf{b}^2) \end{array}$$

Qiu-Sterman functions

$$\langle \mathcal{T}_{\mu}^{\gamma^{+}} \rangle \sim \tilde{s}_{\mu T} T \qquad \langle \mathcal{T}_{\mu}^{\gamma^{+} \gamma^{5}} \rangle \sim s_{\mu T} \Delta T \qquad \langle \mathcal{T}_{\mu}^{\sigma^{\alpha^{+}} \gamma^{5}} \rangle \sim \epsilon_{T}^{\mu \alpha} \delta T_{\epsilon} + g_{T}^{\mu \alpha} \delta T_{g}$$

Functions g_T and h_L are compositions of twist-2/3 PDFs.

A 1/	100	1 100	1110011
- A. V	lau		II UV

March 23, 2018 14 / 16

ł

(日) (四) (三) (三) (三)

Conclusion

Conclusion

- Factorization of rapidity divergences is proven (for SIDIS assuming universality)
- TMD evolution is complete 3-loop
- Small-b matching is known for all TMDs (see table)

	known	soon to come	
H (universal)	3-loop [2010]		
γ_F (universal)	3-loop [2010]		
$\mathcal{D} \ (universal)$	3-loop [2016]		
$f_1(\text{unpol. PDF})$	2-loop [2015]		
$d_1(\text{unpol.FF})$	2-loop [2016]		
g_1 (helicity)	1-loop [2013]		
h_1 (transvercity)	1-loop [2013]	2-loop	
h_{1T}^{\perp} (pretzelocity)	1-loop (=0) [2017]	2-loop	
$f_{1T}^{\perp}(\text{Sivers})$?tree [2014]	tree	
d_{1T}^{\perp} (Collins)	unknown	tree	
h_1^{\perp} (Boer-Mulders)	unknown	tree	
g_{1T}, h_{1L} (worm-gear T,L)	unknown		
		Universitä	it Regensburg

イロト イヨト イヨト イヨト

Conclusion

arTeMiDe

Tool for phenomenological studies of TMDs with high-end theory input

- FORTRAN 90 code
- Module structure
- Convolutions, evolution (LO,NLO,NNLO)
- Fourier to q_T -space, integrations over phase space
- Scale-variation (ζ -prescription)
- User defined PDFs, scales, f_{NP}
- Efficient code (~ 10^9 TMDs ~ 6. min at NNLO)

Currently ver 1.1 (soon 1.2 with TMD FFs)

Available at: https://teorica.fis.ucm.es/artemide

イロト イヨト イヨト イヨト

Universität Regensburg