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Motivation

Motivation

There was a significant progress in the theory of TMD distributions during last years.

The study of TMD distribution enters the new phase: precise extraction of
TMD distributions.

Global fits DY+SIDIS (currently only [Bacchetta, et al; 1703.10157])
Usage of precise data (e.g. LHC)
Inclusion of high-order perturbation correction (e.g. NNLO [Scimemi,AV; 1706.01473]).

Questions of internal consistency and comparison of results became
ultimately important

I will show that currently there is a fundamental problem within the "naive" TMD evolution
approach. It is important/unimportant, but definitely potentially very dangerous. And
should be fixed as early as possible.
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Motivation

Evidence of the problem (1)

Problem of comparison

Couple of mouths ago I tried to compare the unpolarized TMD PDF extracted in [Bacchetta,
et al; 1703.10157] to one extracted in [Scimemi,AV; 1706.01473].

I was not able to do it

I took the value of TMD PDF from [Bacchetta, et al; 1703.10157] substitute to arTeMiDe

And obtain complete non-sense with χ2/points ∼ 40.
Huge disagreement for each experiment!
Is it the problem of the code? do not think so
Is it the problem of formulas misunderstanding? also, do not think so
Is it the problem of formalism? yes, it is
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Motivation

Evidence of the problem (2)
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Anomalous behavior of variations

In [Scimemi,AV; 1706.01473] there was a study of a perturbative stability. With the help of
variation of scales.

The variations of constants c1 and c3 are the largest despite these are 3-loop series
(compare to c2 and c4 which are 2-loop)
The variation of c1 and c3 are numerically unstable (see artifacts)
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Motivation

Evidence of the problem (3)
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Anomalous behavior of variations (2)

The variations of constants does not decrease at large-Q.
Opposite it start to increase at large-Q.
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Motivation

Evidence of the problem (4)

Strong dependence on µ

It seems that TMD fits are seriously dependent on the values of µ (µb, µ∗, etc)
Often the parameter µ is used as a subject of fit.
Is it evidence of perturbative instability? Difficult to answer, since there is no dedicated
study on it.

In fact, these are consequences of a larger problem:

not self-consistency of TMD evolution in the "traditional" form
within perturbation theory.

Under "traditional" I refer to, say [Collins textbook]
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Motivation

Outline

Disclaimer:
part of talk is probably too elementary. But I have not found any dedicated

discussion in the literature.
Thus, it is probably worth to spend some time and fix the terminology.

Outline

TMD evolution in a nutshell
Equations, solutions, etc.
TMD evolution field and its structure

Effects of truncation perturbation theory
Violation of integrability condition, and solution-dependence of TMD evolution
Methods to fix the ambiguity.
Improved γ approach.

ζ-prescription
The advantages of ζ-prescription
Universal scale-independent TMD distribution.

TMD cross-section and perturbative uncertainties.
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TMD evolution: theory

TMD evolution: theory

µ2 d

dµ2
Ff←h(x, b;µ, ζ) =

γfF (µ, ζ)

2
Ff←h(x, b;µ, ζ), (1)

ζ
d

dζ
Ff←h(x, b;µ, ζ) = −Df (µ, b)Ff←h(x, b;µ, ζ), (2)

γF – TMD anomalous dimension

D – rapidity anomalous dimension (= − K̃
2
[Collins’ book], = K[Bacchetta, at

al,1703.10157])
Anomalous dimensions are universal, i.e. independent on hadron, polarization,
PDF/FF(see proof [AV;1707.07606]).
Anomalous dimension depend only on flavor (gluon/quark). Skip index f in the
following.
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TMD evolution: theory

Collinear overlap

There are collinearly divergent subgraphs (then gluon is parallel to Wilson line), which result
to overlap of UV and rapidity divergent sectors. It gives interdependance of anomalous
dimension on "opposite" scale

ζ
d

dζ
γF (µ, ζ) = −Γ(µ),

µ
d

dµ
D(µ, b) = Γ(µ),

where Γ is the (light-like) cusp anomalous dimension.

Thus the logarithmic part of AD’s could be fixed

(exact) γF (µ, ζ) = Γ(µ) ln

(
µ2

ζ

)
− γV (µ)

(order-by-order) D(µ, b) = as(µ)
Γ0

2
Lµ + a2

s

(
Γ0β0

4
L2
µ +

Γ1

2
Lµ + d(2,0)

)
+ ...

standard notation: LX = ln(C−2
0 b2X2), C0 = 2e−γE
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TMD evolution: theory

TMD evolution is used for two practical purposes

Compare different experiments
Modeling TMD distribution

dσ

dX
∼
∫
d2b ei(bqT )Hff ′ (Q,µ)Ff←h(x1, b;µ, ζ1)Ff ′←h(x2, b;µ, ζ2)

Minimize ln(Q/µ)
µ = Q

ζ1ζ2 = Q4

or
ζ1 = ζ2 = Q2

F (x, b;µ, ζ) ∼ C(x, b;µ, ζ)⊗ PDF(x, µ)

Typical model for TMD includes matching

Minimize Lµ, L√ζ
µ ∼
√
ζ ∼ b−1

F (x, b;µf , ζf ) = R[b, (µf , ζf )→ (µi, ζi)]F (x, b;µi, ζi)

Initial
scale

Final
scale

TMD evolution factor
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TMD evolution: theory

The solution of TMD evolution equation (i.e. R)
exists (in the strict mathematical sense) only if

ζ
d

dζ

γF (µ, ζ)

2
= −µ2 d

dµ2
D(µ, b)

integrability condition

Solution is
R[b; (µf , ζf )→ (µi, ζi)] = exp

[ ∫
P

(
γF (µ, ζ)

dµ

µ
−D(µ, b)

dζ

ζ

)]
ζ

µ

(µf , ζf )

(µi, ζi)

The solution is independent
on the path of the integration
due to integrability condition
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TMD evolution: theory

Examples

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 1

lnR =

∫ µf

µi

dµ

µ
γF (µ, ζf )−D(µi, b) ln

(
ζf

ζi

)
given in [Collins’ textbook]

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 2

lnR =

∫ µf

µi

dµ

µ
γF (µ, ζi)−D(µf , b) ln

(
ζf

ζi

)

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 3

lnR =

∫ 1

0

(
γF (µ(t), ζ(t))

µf − µi
(µf − µi)t+ µi

−D(µ(t), b)
ζf − ζi

(ζf − ζi)t+ ζi

)
dt
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TMD evolution: theory

TMD evolution is essentially 2D task.
Let me introduce convenient notation.

Evolution scales

ννν = (ln

(
µ2

1 GeV2

)
, ln

(
ζ

1 GeV2

)
).

2d vector

Anomalous dimensions

E(ννν, b) = (
γF (ννν)

2
,−D(ννν, b)).

vector field

ln ζ

ln μ2

3

2

1 (μ f ,ζ f )

(μi,ζi)

Evolution equation

∇∇∇F (x, b;ννν) = E(ννν, b)F (x, b;ννν)

Solution
lnR[b,νννf → νννi] =

∫
P

E · dννν
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TMD evolution: theory

Scalar potential

The integrability condition is the condition that
evolution field E is irrotational (conservative)

∇∇∇×E = 0

Thus, it is determined by a scalar potential

E(ννν, b) =∇∇∇U(ννν, b)

Evolution is the difference between potentials

lnR[b;νννf → νννi] = U(νννf , b)− U(νννi, b).

Scalar potential can be easily found

U(ννν, b) =

∫ ν1 Γ(s)s− γV (s)

2
ds−D(ννν, b)ν2 + const(b),
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Truncated PT

Test of solution independence

(Q,Q2)→ (µb, µ
2
b) µb =

C0

b
+ 2GeV

Q = 10GeV (perturbation theory could work not very well)

b[GeV]

NLO

lnR

0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.4

-0.2

b[GeV]

NNLOlnR

0.5 1.0 1.5 2.0 2.5 3.0

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

b[GeV]

N
3
LOlnR

0.5 1.0 1.5 2.0 2.5 3.0

-1.5

-1.0

-0.5

Typical range of Fourier integration b ∈ (0, 3)GeV−1

The difference between lnR at b = 1GeV−1 (1.74,1.39,1.23)
The difference between R at b = 1GeV−1 (1.09,1.08,1.06)
Effect is almost negligible but non-zero(!)
Improvement NLO→NNLO (∼ 1.11) is (a bit) bigger then solution dependence
Improvement NNLO→NNNLO (∼ 1.04) is of the same order as solution dependence
NP model for D could compensate the effect
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Truncated PT

Test of solution independence

(Q,Q2)→ (µb, µ
2
b) µb =

C0

b
+ 2GeV

Q =MZ (perturbation theory should work well)

b[GeV]

NLOlnR

0.5 1.0 1.5 2.0 2.5

-2.5

-2.0

-1.5

-1.0

-0.5

b[GeV]

NNLOlnR

0.5 1.0 1.5 2.0 2.5

-4

-3

-2

-1

b[GeV]

N
3
LOlnR

0.5 1.0 1.5 2.0 2.5

-4

-3

-2

-1

Typical range of Fourier integration b ∈ (0, 1)GeV−1

The difference between lnR at b = 0.5GeV−1 (2.6,1.5,1.23)
The difference between R at b = 0.5GeV−1 (1.6,1.35,1.18)
Effect is very sizable, as ' 0.009, b in perturbative region.
Improvement NLO→NNLO (∼ 1.22) is of the same order as solution dependence
Improvement NNLO→NNNLO (∼ 1.10) is smaller then solution dependence
NP model for D could not compensate the effect, it is too large in PT region.
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Truncated PT

Effects of truncation of PT

Synopsis of the problem

There is a solution dependence of TMD evolution
It is almost negligible at smaller Q, but large at larger Q.
It is not disappear (or disappear very slowly) with the increase of PT order.
At 3-loop order it is the largest uncertainty that comes from perturbation theory

The source of solution dependence is the violation of integrability condition.

In (truncated) perturbation theory

ζ
d

dζ

γF (µ, ζ)

2
6= −µ2 d

dµ2
D(µ, b) ⇔ ∇∇∇×E 6= 0 (3)

The evolution flow is non-conservative, the scalar potential is undetermined

The TMD evolution equation has not a unique solution.
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Truncated PT

Main effects

Although the discrepancy between evolution exponents is huge it is not the main problem.
Much more serious problems are

Violation of transitivity
Violation of inverse rule

These are cornerstones of the evolution approach.
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Truncated PT

Transitivity

R[b; (µ1, ζ1)→ (µ2, ζ2)] = R[b; (µ1, ζ1)→ (µ3, ζ3)]R[b; (µ3, ζ3)→ (µ2, ζ2)]

ζ

µ

(µ1, ζ1)

(µ3, ζ3)

(µ2, ζ2)

The evolution between these points
is not the same as
defined in the fit

We have lost prediction power!
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Truncated PT

Inversion

R[b; {µ1, ζ1} → {µ2, ζ2}] = R−1[b; {µ2, ζ2} → {µ1, ζ1}]

ζ

µ

(µ1, ζ1)

(µ2, ζ2)

(µ1, ζ1)

(µ2, ζ2)

Solution 1

Solution 2

(Solution 1)−1

R[b; {µ1, ζ1}
1−→ {µ2, ζ2}] = R−1[b; {µ2, ζ2}

2−→ {µ1, ζ1}]
6= R−1[b; {µ2, ζ2}

1−→ {µ1, ζ1}]

That is the reason of
why I was not able to

compare fits

Reverse ingeneering in each case!
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Truncated PT

Why is it so large?

It is a unique situation

The dependence on truncation of PT is normal situation
The dependence on the solution is not normal situation

This effect is absolutely uncontrollable (could you guaranty that in your program you
always evolve in the same direction?)
It is even difficult to realize the possible consequences
Numerical impact is large
This effect is stable with respect to increase of PT
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Truncated PT

The violation takes place in the integrability condition

µ
dD(µ)

dµ
6= Γ(µ)

Simple example at 1-loop

D = as(µ)
Γ0

2
Lµ

µ
dD
dµ

= as(µ)
Γ0

2

(
µ
d

dµ
Lµ

)
+

(
µ
das(µ)

dµ

)
Γ0

2
Lµ

= as(µ)Γ0−β0a
2
s(µ)Γ0Lµ 6= as(µ)Γ0

δΓ(µ, b) = Γ(µ)− µ
dD(µ, b)

dµ

At N ’th order of perturbation theory δΓ(N) ∼ aN+1
s LNµ

Since as ∼ ln−1 µ there is always (at any finite N) value of b(fixed) then δΓ� 1

The value of µ does not play a role
In fact, this term is ALWAYS NLO, in the standard resummation counting (asL ∼ 1).
The NP models for D only enforce the problem.
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Helmeholz decomposition

Helmeholz decomposition

E = Ẽ + Θ
Ẽ conservative (irrotational) component curlẼ = 0
Θ divergence-free component ∇∇∇ ·Θ = 0

Ẽ ·Θ = 0
curlE = curlΘ = δΓ

2

Ambiguous scalar potential

The divergence-free component is artifact of PT. But it prevents the definition of scalar
potential

∇∇∇Ũ = Ẽ, curlV = Θ

∇2Ũ =
dγF

d lnµ

Poisson equation solution is defined up to ∇2f = 0.
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Helmeholz decomposition

Non-conservative evolution

ζ

µ

(µ1, ζ1)

(µ2, ζ2)

(µ1, ζ1)

(µ2, ζ2)

Solution 1

Solution 2

∮
C

E · dν =

∫
Ω
d2ν curlΘ =

1

2

∫
Ω
d2ν δΓ(ν, b)

ln
solution 1
solution 2

= ln

(
ζf

ζi

)∫ µf

µi

dµ

µ
δΓ(µ, b)

The "longer" evolution – the bigger error
That is why for Z−boson

error is larger
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Helmeholz decomposition

How to fix it?

There are many possibilities

Lets use a single evolution line µ2 = ζ, and the solution 3
+ Restore self-consistency and inversion
- - Everyone stick to a single line. No freedom for modeling.

- Numerically more expensive

Lets set Θ = 0, and use only Ẽ
+ + Ideal solution which does not restrict anything

- The procedure is not unique, we need to set boundary conditions
Lets repair the integrability condition by adding terms beyond PT

+ + Very simple
- The procedure is not unique (however, there is only single "good" solution)
Equivalent to some boundary condition (do not know which)
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Improved D

We modify anomalous dimensions such that integrability restored

µ
dD(µ, b)

dµ
= −ζ

dγF (µ, ζ)

dζ
It can be done from both sides of the equation.

Improved D

Facilitate

µ
dD
dµ

= Γ

by

D(µ, b) =

∫ µ

µ0

dµ

µ
Γ(µ) +D(µ0, b)

In the spirit of [Collins’ text book].
Already used in many studies

However, it is not the best way

Improved γ
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Improved D

Improved D solution

lnR[b; (µf , ζf )→ (µi, ζi);µ0] =

∫ µf

µi

dµ

µ

(
Γ(µ) ln

(
µ2

ζf

)
− γV (µ)

)
−
∫ µi

µ0

dµ

µ
Γ(µ) ln

(
ζf

ζi

)
−D(µ0, b) ln

(
ζf

ζi

)
.

µ0 is some scale where perturbation theory works. At larger b is to be modified (see e.g.
b∗)
In fact it is the composition of solution 1 and 2

ln ζ

ln μ2

3

2

1

Im
p
ro
ve
d
D

(μ f ,ζ f )

(μi,ζi)

μ0

Transitivity and inversion hold
If different µ0 are used, the problem
returns
If different non-perturbative models are used,
the problem returns
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Improved γ

We modify anomalous dimensions such that integrability restored

µ
dD(µ, b)

dµ
= −ζ

dγF (µ, ζ)

dζ
It can be done from both sides of the equation.

Improved D
Facilitate

µ
dD
dµ

= Γ.

by

D(µ, b) =

∫ µ

µ0

dµ

µ
Γ(µ) +D(µ0, b)

In the spirit of [Collins’ text book].
Already used in many studies
However, it is not the best way

Improved γ

We set

ζ
dγF

dζ
≡ −µ

dD
dµ

= δΓ− Γ

Or
γF (µ, ζ)→ γM (µ, ζ, b)

γM = (Γ− δΓ) ln
(µ2

ζ

)
− γV

Completely self consistent
Very natural
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Improved γ

Improved γ-solution

γM = (Γ− δΓ) ln
(µ2

ζ

)
− γV

lnR[b; (µf , ζf )→ (µi, ζi)] = −
∫ µf

µi

dµ

µ
(2D(µ, b) + γV (µ))

+D(µf , b) ln

(
µ2
f

ζf

)
−D(µi, b) ln

(
µ2
i

ζi

)
.

Explicitly transitive, and inverse.
Simple non-perturbative generalization (D → DNP )
No extra scales. The evolution field is explicitly conservative.
I suggest to use this formula for phenomenology, and avoid all previous complications
Always publish DNP . Otherwise we cannot compare.
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Improved γ

How strong is modification of the field?

ln ζ

ln μ2

NLO b=0.5GeV
-1

ln ζ

ln μ2

N
3
LO b=0.5GeV

-1
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ζ-prescription

Part 2:
ζ-prescription
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ζ-prescription

The final scales (µf , ζf ) are fixed by process kinematics ∼ (Q,Q2).
The initial scale are fixed only by model of TMD distribution.

Small-b matching

At small-b one can match TMD to collinear distribution by OPE

TMD(x, b;µi, ζi) = C(x,Lµ,L√ζ , µ)⊗ PDF(x, µ)

It is often used as an zero-level input to the model of TMD.
It guaranties agreement with high energy experiments.
It also requires the evolution from (Q,Q2)→ (µi, ζi), which are typically selected as

µ2
i = ζi ∼

1

b2

It is an arbitrary choice without any profit.
Let us use 2D nature of TMD evolution to get rid of logarithms completely.
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ζ-prescription

"Naive" ζ-prescription

TMD(x, b;µi, ζi) = C(x,Lµ,L√ζ , µ)⊗ PDF(x, µ)

The ζ appears only in the coefficient function. Let us use it to compensate Lµ.
1-loop example

C = δ(x̄) + asCF

[
− 2 Lµp(x)︸ ︷︷ ︸

never large
thanks to
charge

conservation

+2x̄+ δ(x̄)
( usually large︷ ︸︸ ︷
−LµL√ζ + 3Lµ−ζ2

)]

We set ζ → ζµ: such that L√ζ = 3.

ζµ =
2µ

b
e−γE

PT-calculable︷ ︸︸ ︷
e3/2+as...

In this way we determine it in the PT. It has been used in [Scimemi,AV,1706.01473]
Let me call it "naive" implementation, because it is defined only in PT.
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ζ-prescription

To understand ζ-prescription and to formulate it non-perturbatively
we should study

the structure of evolution field

1 10 102

1

10

102

μ2 [GeV
2]

ζ
[G

e
V

2
]

The evolution field is determined by potential U

In perturbation theory by potential Ũ
Evolution potential is smooth real-valued function without singularities in "physical"
region.

There are lines of on which potential is same, or equipotential lines, or curves of
null-evolution
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ζ-prescription

The evolution from (µf , ζf ) to (µi, ζi)
lnR = U(µf , ζf )− U(µi, ζi)

It the same as the evolution to another point of equipotential line ωωω
lnR = U(µf , ζf )− U(ωωω(µi, ζi))

ln ζ

ln μ2

3

2

1

Im
p
ro
ve
d
D

fi
xe
d
μ

(μ f ,ζ f )

(μi,ζi)

(μ f ,ζμ f )

μ0

We are free to use the simplest path of
evolution
Geodesic. Just fixed-µ evolution

lnR[b; (µf , ζf )→ (µi, ζi)] = −D(µf , b) ln
( ζf

ζµf

)
The E must be conservative
(I found that) Psychologically it is difficult to
accept, since there is "no resummation of large
Sudakov logarithms", etc. But it is indeed just
the same.
Accepting that we should accept the following
→
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ζ-prescription

TMD distributions on the same equipotential line are equivalent.

1 10 102

1

10

102

μ2 [GeV
2]

ζ
[G

e
V

2
]

TMD(x, b, 1)

TMD(x, b, 2)

TMD(x, b, 3)

We can enumerate them by a lines
not by (µ, ζ)

This the main idea of ζ-prescription
F (x, b;µ, ζ)→ F (z, b; line)

F This is "non-perturbative" definition
F In truncated PT it is equivalent

to "naive" at some line.
?? Which line to select?
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F In truncated PT it is equivalent

to "naive" at some line.
?? Which line to select?
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ζ-prescription
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Singularities of E

Singularities of evolution field
b=0.2GeV
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Some non-interesting singularities at µ, ζ →∞
Landau pole at µ = Λ

Saddle point (blue dot)

D(µsaddle, b) = 0, γM (µsaddle, ζsaddle, b) = 0
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Singularities of E

Singularities of evolution field
b=0.2GeV
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Due to presence of saddle point the set of uquipotential lines is split into subsets with
restricted domains
Subset 1: µ > µsaddle

Subset 2: µ < µsaddle

Special line: The one which passes though the saddle point (µ is unrestricted)
Special lines dissect the evolution planes into quadratures of the "same evolution sign".
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Singularities of E

In ζ-prescription we set
ζ → ζµ(ννν0)

TMDs are "enumerated" by ννν0 (the number of line)

TMDs are scale independent

µ
d

dµ
F (x, b;µ, ζµ) = 0.

However, there is a redundant dependence on µ in the form of restriction

at small b: F (x, b) = C(x, b, µOPE)⊗ f(x, µOPE)

µOPE is restricted to the range of µ of equipotential line.
Otherwise there is an evolutional "step" at µOPE = µsaddle.
It is not good, it makes difficult matching of low and high b in the perturbation theory
(since saddle point migrates)
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Universal TMD

Universal scale-independent TMD

There is a unique line which passes though all µ’s

The universal scale-independent TMD distribution

F (x, b) = F (x, b;µ, ζµ)

where ζµ is the special line.
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Universal TMD

Universal scale-independent TMD

The definition is non-perturbative
The definition is the same for all TMD distributions (since the evolution is the same)
WARNING: At large-b the saddle point can escape the observable region. Make sure
that your DNP keeps µsaddle > Λ

Automatic in b∗.
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TMD cross-section

Part 3:
TMD cross-section

and its uncertainties
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TMD cross-section

To measure perturbative uncertainties, we typically vary scales µ.
In exact PT, µ-dependence is absent, but at finite PT there is the perturbative
mismatch between the evolution exponent and the fixed order coefficient
function.
In TMD case there is an additional source of scale-dependence, solution
dependence

A TMD cross-section

dσ

dX
= σ0

∑
f

∫
d2b

4π
ei(b·qT )Hff ′ (Q,µf )

×{Rf [b; (µf , ζf )→ (µi, ζi), µ0]}2Ff←h(x1, b;µi, ζi)Ff ′←h(x2, b;µi, ζi),

µ0 → c1µ0, µf → c2µf , µi → c3µi, µOPE → c4µOPE.

ci ∈ (0.5, 2)

Some of these scales measure the solution dependence, some perturbative mismatch, some
both.
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TMD cross-section

A TMD cross-section

dσ

dX
= σ0

∑
f

∫
d2b

4π
ei(b·qT )Hff ′ (Q,µf )

×{Rf [b; (µf , ζf )→ (µi, ζi), µ0]}2Ff←h(x1, b;µi, ζi)Ff ′←h(x2, b;µi, ζi),

ζ

μ2

μ0 μ fμi

ζ f

ζi

c1∈(1/2,2)

ζ

μ2

μ0 μ fμi

ζ f

ζi

c2∈(1/2,2)

ζ

μ2

μ0 μ fμi

ζ f

ζi

c3∈(1/2,2)

c1 measure only solution dependence
c2 measure mismatch between H and R + solution dependence
c3 measure mismatch between F and R + solution dependence
c4 measure mismatch between C and f

A.Vladimirov Anatomy of TMD evolution February 14, 2018 40 / 46



TMD cross-section

Cross-section in the improved γ

In the improved γ there is no solution dependence

dσ

dX
= σ0

∑
f

∫
d2b

4π
ei(b·qT )Hff ′ (Q,µf )

{Rf [b; (µf , ζf )→ (µi, ζi)]}2Ff←h(x1, b;µi, ζi)Ff ′←h(x2, b;µi, ζi),

where

Rf [b; (µf , ζf )→ (µi, ζi)] = exp
{
−
∫ µf

µi

dµ

µ

(
2DfNP(µ, b) + γfV (µ)

)
+DfNP(µf , b) ln

(
µ2
f

ζf

)
−DfNP(µi, b) ln

(
µ2
i

ζi

)}
.

There are 3 scales and no solution dependence
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TMD cross-section

Cross-section in the ζ-prescription

dσ

dX
= σ0

∑
f

∫
d2b

4π
ei(b·qT )Hff ′ (Q,µf ){Rf [b; (µf , ζf )]}2Ff←h(x1, b)Ff ′←h(x2, b),

where

Rf [b; (µf , ζf )] = exp
{
−
∫ µf

µsaddle

dµ

µ

(
2DfNP(µ, b) + γfV (µ)

)
+DfNP(µf , b) ln

(
µ2
f

ζf

)}
WARNING: Special line boundary condition should be taken into account in the coefficient
function (details in private)
However, we can exponentiate boundary conditions and get a simple practical formula
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TMD cross-section

Practical formula

dσ

dX
= σ0

∑
f

∫
d2b

4π
ei(b·qT )Hff ′ (Q,µf ){R̃f [b; (µf , ζf )]}2F̃f←h(x1, b)F̃f ′←h(x2, b),

with

R̃f [b; (µf , ζf )] = exp
{
−DfNP(µf , b)

[
ln

(
ζf b

C0µf

)
+ vf (µ, b)

]}
,

v is given perturbative series, v = 3
2

+ as...

F̃ is TMD in the "naive" ζ-prescription
There is no integrations in the "Sudakov exponent"
There are no approximations (ala high energy expansion of integrals)
The TMD at "final" point has curious form

Ff←h(x, b;Q,Q2) = (C0Qb)
−DfNP(Q,b) e−D

f
NP(Q,b)v(Q)F̃f←h(x, b).

There are only 2 scales and no solution dependence
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Test uncertainties

Uncertainties of TMD cross-section (1)

Z-boson production at CDF run 2
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Test uncertainties

Uncertainties of TMD cross-section (2)

E288 (200) Q = 6− 7 GeV
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Conclusion

Conclusion

Main message:
There is a serious problem within the TMD evolution (at finite order PT):

solution-dependence.
It brings inconsistencies into phenomenology and make impossible inter-comparison.

Message 1:
I suggest to use improved γ approach to avoid this problem

Minimal modification of previous formulas
Explicit path independence

Message 2:
It is even better to use ζ-prescription

Non-perturbatively formulated
Guarantied absence of (large) logarithms in coefficient function
Universal for all quantum numbers
Very simple practical formula (no integrations!)
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