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Introduction

Success of parton model

I The higher energy ⇒ smaller distances

I The higher energy ⇒ asymptotic freedom ⇒ free fields
I High energetic hadron ⇒ all motions are collinear

(Almost)* Parton model
Weakly interacting fields collinearly move in a single direction

with some distribution of momentum (parton distribution function)

* In fact, it is not a parton model but the result of collinear factorization theorem.
However, in a way it is used at high energy, they are practically indistinguishable.
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Introduction

Nucleon Tomography

Nucleon tomography: direction(s) of study which aim is to restore the “tomo-
graphic” picture of hadron.

Outline

In this talk, I will shortly present two main topics
I Generalized Parton distributions (GPD)
I Transverse Momentum distributions (TMD)
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Transverse degrees of freedom

Transverse degrees of freedom

Hadron
at rest

boost

boost

(+,-)-plane

(x,y)-plane

x1p+
x2p+

x3p+
x4p+

x5p+ ∑
xip+ = p+

I Q is generic hard scale
I Λ is generic soft scale (∼ ΛQCD ' 0.25GeV ∼ (1.3fm)−1)
I In the factorization frame p+ ∼ Q
I p− components are small p− ∼ m2/p+ ∼ Λ2/Q
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(x,y)-plane
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x3p+
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x5p+ ∑
xip+ = p+

I All transverse momenta are of hardronic scale ∼ Λ

I Hadron size is of the same scale ∼ Λ−1
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Transverse degrees of freedom

Tomographic picture of a hadron

Reconstruction of transverse position/motion of a parton
at a given value of collinear momentum.

[Bacchetta,et al,2017]
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Transverse degrees of freedom

Wigner distribution
5D image of hadron – ultimate goal of nucleon tomography
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Operators

Operators & matrix elements

Operator for Parton distribution function

〈p|q̄(zn)[zn, 0]γ+q(0)|p〉 = p+

∫
dxeixzp

+
f1(x)

0n zn

P P ' p+n̄+ M2

2p+
n

negligible

Wilson line

[a, b] = P exp
(
ig

∫ a

b
dxµAµ(x)

)
I Gauge link : [a, b]

gauge trans.−−−−−−−−→ U(a)[a, b]U†(b)

I Transitivity: [a, b][b, c] = [a, c]

A.Vladimirov June 4, 2019 8 / 38



Operators

Operators & matrix elements

Operator for Parton distribution function

〈p|q̄(zn)[zn, 0]γ+q(0)|p〉 = p+

∫
dxeixzp

+
f1(x)

±∞n0n zn

P P ' p+n̄+ M2

2p+
n

negligible

〈p|T̄{q̄(zn)[zn,−∞n]}γ+T{[−∞n, 0]q(0)}|p〉 = p+

∫
dxeixzp

+
f1(x)

see e.g.[Jaffe, Nucl.Phys.B229]

Wilson line

[a, b] = P exp
(
ig

∫ a

b
dxµAµ(x)

)
I Gauge link : [a, b]

gauge trans.−−−−−−−−→ U(a)[a, b]U†(b)

I Transitivity: [a, b][b, c] = [a, c]

A.Vladimirov June 4, 2019 8 / 38



Operators

Operators & matrix elements

Operator for Parton distribution function

〈p|q̄(zn)[zn, 0]γ+q(0)|p〉 = p+

∫
dxeixzp

+
f1(x)

±∞n0n zn

P P ' p+n̄+ M2

2p+
n

negligible

〈p|T̄{q̄(zn)[zn,−∞n]}γ+T{[−∞n, 0]q(0)}|p〉 = p+

∫
dxeixzp

+
f1(x)

see e.g.[Jaffe, Nucl.Phys.B229]

It can be shown (in the light-cone quantization) that

f1(x)|x>0 =
1

2x

∑
λ=↑↓

∫
d2kT

(2π)3

〈p|b†λ(xp+,kT )bλ(xp+,kT )|p〉
〈p|p〉
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Operators

Form factor

〈p−
∆

2
|q̄(0)γµq(0)|p+

∆

2
〉 = ū(p2){γµF1(∆2) +

iσ∆µ

2M
F2(∆2)}u(p1)

0

p1 = p+ ∆
2

p2 = p− ∆
2

Interpretation

I In interpretation exists only in the Breit frame

F (r) =

∫
d2∆ei(r∆)F (∆)

I Nucleon is “2D” pancake (like in light-front !)
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Generalized parton distributions

Generalized parton distributions

PDF

Measures
collinear momentum

of a parton

p p

0n zn Form factor

Measures
distribution in

transverse plane

p+ ∆
2

p− ∆
2

0

GPD

p+ ∆
2

p− ∆
2

0n zn

Generalized
Parton

Distribution

〈p−
∆

2
|q̄
( zn

2

)[ zn
2
,
−zn

2

]
γ+q

(
−zn

2

)
|p+

∆

2
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Generalized parton distributions

GPD: main properties

〈p−
∆

2
|q̄
( zn

2

)[ zn
2
,
−zn

2

]
γ+q

(
−zn

2

)
|p+

∆

2
〉

= p+

∫
xeixzp

+
[
Hq(x, ξ,∆2)ū(p2)γ+u(p) + Eq(x, ξ,∆2)ū(p2)

iσ+∆

2M
u(p)

]

I ξ = 2∆+/p+ “skewedness” parameter.
I |x| > |ξ| similar to PDF
I |x| < |ξ| similar to Distribution amplitude
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Generalized parton distributions

The impact parameter distribution appears at
ξ → 0

H(x, 0,b) =

∫
d2∆ei(b∆)H(x, 0,∆)

The knowledge on GPDs is rudimentary (only models)
Reason: Very complicated phenomenology
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Generalized parton distributions

How to measure GPD?

To measure off-forward hadron state
one must consider

exclusive reaction at the level of amplitude

Main reactions for GPDs are Deeply-Virtual Compton scattering (DVCS) or Deeply-Virtual
meson production (DVMP)

γ∗p→ pγ, γ∗p→ pπ

I Measurements from JLab, COMPASS, HERA, HERMES
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Generalized parton distributions

Main complication

cross-section = |amplitude|2

I Amplitude is a complex number
I Amplitude is a composite of several Compton Form-Factors (CFF)

Structure of DVCS

I Accompanying process (Bether-Heitler scattering)
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Generalized parton distributions

Extraction of GPDs

cross-section = |ADVCS +ABH|2 ∼ ReA2
DVCS + 2ReADVCSReABH + ...

I ABH ∼ AComp.F (∆) is “known”
I ADVCS is wanted
I Plenty of terms with different angular modulations
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Generalized parton distributions

Extraction of GPDs

Measurement: Measure unpolarized and polarized DVCS in 4D binning (dependence on Q,
∆, x and ϕ)

dσ

dφdtdQ2dx

First step: Measuring all(4) angular modulations of unpolarized and transversely polarized
DVCS one can resolve the system and extract a minimal set (8) of Compton form factors
(CFF).

ReH,ReE,ReH̃,ReẼ
ImH, ImE, ImH̃, ImẼ

Second step: each CFF could be presented in terms of GPDs (factorization theorem)

H,E, H̃, Ẽ

HT , ET , H̃T , ẼT

With the recent data from COMPASS, CLAS and Hall A (2015-..) this program
became realistic
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Generalized parton distributions

[H.Moutarde,P.Sznajder,J.Wagner,1905.02089]

I Different kinds of observables (2624 data point)
I Trained neural network for Compton Form Factor (PARTONS)

I So far, no analysis of GPDs
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Generalized parton distributions

GPD state

I Beautiful and well-developed theory
I Recently plenty of data appear (even more to appear from JLab12)
I Very difficult phenomenology (not too many groups)
I First accurate extractions for FCC
I We close to accurate “model-independent” extraction of GPDs

Further reading

I M.Diehl, “Generalized Parton Distributions” [arXiv:0307382]
I A.V. Belitsky,& A.V. Radyushkin“Unraveling hadron structure with generalized parton

distributions” [arXiv:0504030]
I M.Guidal, H.Moutarde, M.Vanderhaeghen “Generalized Parton Distributions in the

valence region from Deeply Virtual Compton Scattering” [arXiv:1303.6600]
I M.Polyakov, P.Schweitzer “Forces inside hadrons: pressure, surface tension, mechanical

radius, and all that” [arXiv:1805.06596]
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Generalized parton distributions
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Transverse momentum distributions

TMD operator

Operator for transverse momentum dependent distribution

〈p|T̄{q̄(zn)[zn,±∞n]}γ+T{[±∞n, 0]q(0)}|p〉 = p+

∫
dxeixzp

+
f1(x)

0n zn

p p

Fourier image of function F (x,b) has a meaning of distribution of transverse momen-
tum (at collinear momentum x) [P.Mulders,J.Collins,...,93-95]

F1(x,kT ) =

∫
d2b eibkT F1(x,b)

It is only the beginning of story ...
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Transverse momentum distributions

Break down of gauge invariance

I "Naive" TMD operator is not gauge invariant
q̄(zn+ b)[zn+ b,±∞n+ b]γ+[±∞n, 0]q(0)

gauge transf.−−−−−−−−−→
q̄(zn+ b)[zn+ b,±∞n+ b]U†(±∞n+ b)γ+U(±∞)[±∞n, 0]q(0)

±∞n
±∞n+ b

0n

zn+ b

p p

〈p|T̄{q̄(zn+b)[zn+b,±∞n+b][±∞n+b,±∞n±∞∞∞T ]}γ+T{[[±∞n±∞∞∞T ,±∞n][±∞n,0]q(0)}|p〉=

p+

∫
dxeixzp

+
F1(x,b)

[A.Belitsky,X.Ji,F.Yuan,0208038]
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Transverse momentum distributions

Break down of gauge invariance
I

q̄(zn+ b)[zn+ b,±∞n+ b]γ+[±∞n, 0]q(0)
gauge transf.−−−−−−−−−→

q̄(zn+ b)[zn+ b,±∞n+ b][±∞n, 0]q(0)

±∞n±∞∞∞T

±∞n+ b

±∞n0n

zn+ b

p p

like a staple

〈p|T̄{q̄(zn+b)[zn+b,±∞n+b][±∞n+b,±∞n±∞∞∞T ]}γ+T{[[±∞n±∞∞∞T ,±∞n][±∞n,0]q(0)}|p〉=

〈p|q̄(zn+ b)[staple contour]q(0)|p〉 = p+

∫
dxeixzp

+
F1(x,b)

[A.Belitsky,X.Ji,F.Yuan,0208038]
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Transverse momentum distributions

Transverse momentum couples to spin

〈p, s|q̄(zn+ b)[staple contour]q(0)|p, s〉 = p+

∫
dxeixzp

+
{
F1(x,b)+iε+−µνbµsνMF⊥1T (x,b)

}

I F⊥1T = Sivers function [D.Sivers, PRD 41 (1990)]

I Unpolarized quark in polarized hadron

I Sivers effect p↑ + p→ πX

AN =
dσ↑(kT )− dσ↓(kT )

dσ↑(kT ) + dσ↓(kT )

[E704,(1991)]
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Transverse momentum distributions

Partons distribution is asymmetric (even in unpolarized case)

[picture by A.Prokudin]
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Transverse momentum distributions

Zoo of TMD’s

Transverse momentum distributions of leading order

Have analog in "naive" parton model

Have not analog

Change orientation of spin

Produce spin

+ 8 gluon TMDs
+ 2 (or 8) TMD fragmentation

function
+ non-perturbative evolution

kernel
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Transverse momentum distributions

“New” type of divergences → rapidity divergences

TMD
operator

±∞n

±∞n+ b

0n

zn+ b

PDF
operator

0n zn

Ultraviolet (UV) divergences

Rapidity divergences

Rapidity divergences
are

renormalizable (in perturbation theory)
[AV,JHEP 1804 (2018)]
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Transverse momentum distributions

Renormalization of TMD operator

[
q̄(zn+ b)[staple contour]q(0)

]
(µ, ζ) = ZTMD

UV (µ)R(b;µ, ζ)
[
q̄(zn+ b)[staple contour]q(0)

]bare

I ZTMD
UV (µ) UV renormalization constant

I R(b;µ, ζ) rapidity divergence renormalization constant

TMD evolution
is 2D evolution

A.Vladimirov June 4, 2019 26 / 38



Transverse momentum distributions

Renormalization of TMD operator

[
q̄(zn+ b)[staple contour]q(0)

]
(µ, ζ) = ZTMD

UV (µ)R(b;µ, ζ)
[
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UV (µ) UV renormalization constant

I R(b;µ, ζ) rapidity divergence renormalization constant

1 10 102

1

10

102

μ2 [GeV
2]

ζ
[G

e
V

2
]

TMD evolution
is 2D evolution

µ2 dF (x, b;µ, ζ)

dµ2
= γF (µ, ζ)F (x, b;µ, ζ)

ζ
dF (x, b;µ, ζ)

dζ
= −D(µ, b)F (x, b;µ, ζ)

I Anomalous dimensions γF and D are known up to
three-loops.

I Anomalous dimension are universal for all TMD
distributions
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Transverse momentum distributions

Renormalization of TMD operator

[
q̄(zn+ b)[staple contour]q(0)

]
(µ, ζ) = ZTMD

UV (µ)R(b;µ, ζ)
[
q̄(zn+ b)[staple contour]q(0)

]bare

I ZTMD
UV (µ) UV renormalization constant

I R(b;µ, ζ) rapidity divergence renormalization constant

ln ζ

ln μ2

3

2

1

Im
p
ro
ve
d
D

fi
xe
d
μ

(μ f ,ζ f )

(μi,ζi)

(μ f ,ζμ f )

μ0

TMD evolution
is 2D evolution

F (x,b;µf , ζf ) =

exp
[ ∫

P

(
γF (µ, ζ)

dµ

µ
−D(µ,b)

dζ

ζ

)]
F (x,b;µi, ζi)

[I.Scimemi,AV,JHEP,1808(2018)]

I Path independence
I Unified picture of various evolution scenarios
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Transverse momentum distributions

Evolution potential
Solution exist only if

integrability condition holds

ζ
dγF

dζ
= −µ2 dD

dµ2

−→
∇∇∇ ×

−→
E = 0

−→
E is conservative field

1 10 102

1

10

102

μ2 [GeV
2]

ζ
[G

e
V

2
]

Conservative field is determined
by a potential

−→
E =

−→
∇∇∇U

Evolution is a difference
between potentials

R[(µf , ζf )→ (µi, ζi)] = exp
(
Uf − Ui

)

(µf , ζf )

(µi, ζi)
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Transverse momentum distributions

TMD distribution is not defined by a scale (µ, ζ)
It is defined by an equipotential line.

1 10 102

1

10

102

μ2 [GeV
2]

ζ
[G

e
V

2
]

The scaling is defined by
a difference between scales

a difference between potentials

TMD(x, b, 1)

TMD(x, b, 2)

TMD(x, b, 3)

We can enumerate them by a lines
not by (µ, ζ)

F (x, b;µ, ζ)→ F (z, b; line)
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Transverse momentum distributions

TMD distributions on the same equipotential line are equivalent.
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Transverse momentum distributions

How to measure TMD distribution

To measure transverse momentum one needs:

I “light-like” hadron plane
I transverse momentum coupled to

measured source
I pT should be small pT � Q,

otherwise it is perturbatively generated

There are 3 main processes to extract TMD distributions
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Transverse momentum distributions

Complication

dσ

dp2
T dQ

' σ0(Q)

∫
d2beibpTR[Q→ (µ, ζ)]F1(x1,b;µ, ζ)F2(x2,b;µ, ζ)

I Two distribution to extract F1 & F2

I + non-perturbative evolution R ∼ exp(−D)

unpol.DY
F1 × F1

unpol.SIDIS
F1 ×D1

unpol.e+e−

D1 ×D1

F 1
TU in DY
F1 × F⊥1T

F
sin(φ−φs)
UT in SIDIS

F⊥1T ×D1

FLL in SIDIS
g1L ×D1
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Transverse momentum distributions

First NNLO extraction

[V.Bertone,I.Scimemi,AV,1902.08474]

TMD factorization ⇒ small-qT /Q
qT
Q
< 0.2
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Transverse momentum distributions

First NNLO extraction

[V.Bertone,I.Scimemi,AV,1902.08474]

TMD factorization ⇒ small-qT /Q
qT
Q
< 0.2

PHENIX

E288
E605
E772

LHCb
CDF, D0

ATLAS

CMS

ATLAS(116<Q<150)

ATLAS(46<Q<66)

Total:

457 data points
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High-energy: CDF, D0,
ATLAS, CMS, LHCb

194 points

Low-energy: E288, E605,
E772, PHENIX

263 points

Total: 457 points
4 < Q < 150GeV

x > 10−4
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Transverse momentum distributions

Rapidity anomalous dimension

D(µ,b)

I Independent, and universal function of QCD
I The rapidity anomalous dimension is non-perturbative at large b

I Measures property of QCD vacuum (interpretation?)
I Appears in different tasks of hadron physics (jets, small-x)

b(GeV-1)

D(b,μ=91 GeV)

1. 2. 3. 4. 5.

0.2

0.4

0.6

0.8

1.

Recent extraction from global fit of Drel-Yan
processes

[V.Bertone,I.Scimemi,AV,1902.08474]

- - full data set
- - without LHC data
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Transverse momentum distributions

[V.Bertone,I.Scimemi,AV,1902.08474]

uTMDPDF in b-space
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Transverse momentum distributions

TMD state

I Significant theory progress within last ∼ 5− 8 years
I Factorization theorem is finally proven
I First QCD-consistent extraction of TMDs
I More to come in following years

Further reading

I R.Tangerman, P.Mulders, “Intrinsic transverse momentum and the polarized Drell-Yan
process” [arXiv:9403227]

I A.Bacchetta, et al, “Semi-inclusive deep inelastic scattering at small transverse
momentum” [arXiv:0611265]

I R. Angeles-Martinez,et al“Transverse Momentum Dependent (TMD) parton distribution
functions: status and prospects” [arXiv:1507.05267]

I I.Scimemi “ A short review on recent developments in TMD factorization and
implementation” [arXiv:1901.08398]

I I.Scimemi, A.Vladimirov “Systematic analysis of double-scale evolution”
[arXiv:1803.06596]
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Generalized TMD

GTMD
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Generalized TMD

Generalized TMD distribution

Operator for transverse momentum dependent distribution〈
p−

∆

2

∣∣∣q̄( zn+ b

2

)[
staple contour

]
q

(
−
zn+ b

2

)
}
∣∣∣p+

∆

2

〉
= p+

∫
dxeixzp

+
F1(x,b,∆)

+...
zn+b

2

− zn+b
2

p+ ∆
2

p− ∆
2

±∞n

I All (main) properties are known (evolution, matching)
I No “simple” processes to measure

GTMD distribution ⇔ Wigner distribution

∫
d2b ei(bkT )

∫
d2∆ ei(r∆)F1(x,b,∆) = W (x, r,kT )
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Generalized TMD

Conclusion

Transverse Momentum
Dependent distributions (TMDs)

I Significant progress in theory
I Still many gaps (perturbative

mathing, power corrections, etc)
I Plenty of measurements + more

to come
(COMPASS,JLab12,RHIC)

I First “consistent” extractions

Generalized Parton
Distributions (GPDs)

I Theory is developed long ago
I Involved cross-section ↔

amplitude decomposition
I Only recently consistent

extraction of CFF from global
analysis

I No GPDs (so far)

Nucleon tomography is area of pure QCD.
Progress in it also pushes all QCD-dependent areas.
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Generalized TMD

Electron-Ion collider

Dedicated QCD machine

I Proton/ion, polarized beam
I Large coverage of Q2 (moderate values)
I Large dedicated program for nucleon tomography

Thank you,
for attention!
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