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Introduction

In the limit of large hadron's momentum transverse momentum dependent (TMD)
factorization can be applied to certain lattice observables.

Plenty of examples for collinear factorization (sensitive to PDF and GPD)

Could one study TMDs with lattice? ⇒ YES
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Collinear factorization → PDFs

q̄(z)γµ[z, 0]q(0) =

∫ 1

0
du

∂

∂zµ
q̄(uz) 6z[uz, 0]q(0)︸ ︷︷ ︸

tw-2

(1 + αs...) + z2[tw-3/4] + ...

〈p|q̄(z)γµ[z, 0]q(0)|p〉 = 2pµ
∫ 1

−1
dxeix(pz) f1(x, x(pv))︸ ︷︷ ︸

PDF

(1 + αs...) + z2[tw-2/3/4] + ...

Λ−1

Λ/(x(pv))

smaller x(pv)

Λ−1

larger x(pv)

Λ−1

Larger (pv) = smoother asymptotic z2 → 0.
One can construct plenty of such observables

(Thursday session!)[Braun,Muller,07; Ji,13; Radyushkin, 16; Ma,Qiu,17;...]
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That does not work for TMD-like observables.
There is no twist-expansion, instead there is �eld-mode separation

Field modes:

q → qcollinear + qanti-collinear + qsoft + qhard

pcollinear ∼ {1, λ2, λ}
panti-collinear ∼ {λ2, 1, λ}

psoft ∼ {λ2, λ2, λ}

Central assumption:
fast moving hadron has only

colinear �elds

lim
p→p+n̄

|p〉 ' Ψ (qcollinear, Acollinear) |0〉

If the observable is �spherically-symmetric� then this approach gives
collinear factorization

If there are some (�nite) transverse elements then this approach gives
TMD factorization
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Constructing TMD-sensitive observable

Restrictions on observable

I Equal-time

I With transverse size (bP ) = 0

I With anti-collinear modes

Simplest case:

Γ = some Dirac structure

It is like DIS+(instant)jet

At L→∞ [0, Lv]→ H(0) (with LHH = H†(ivD)H)

current Ji(x) = H†(x)q(x), hadron tensor Wij = 〈P |J†i (x)Jj(0)|P 〉
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Factorization is (almost) equivalent to factorization of SIDIS or DY

0

`v + b

Γ
0

`v + b

0

`v + b

−n∞ −n∞

n̄∞ n̄∞

Negelecting power corrections and accounting the overlap in the soft modes

operator of parton's momentum (p̂ ∼ xP )
Fourier conjugated to `
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Components of factorized expression (intermediate)

unsubtracted TMDPDF (in position space)

I Rapidity divergent!

I The leading power contribution selects Γ = Γ′

Hard coe�cient function [Ebert,Stewart,Zhao;1811.00026][AV,Schäfer;2002.07527]

|CH |2 = 1 + CF
αs

4π

(
−L2 + 2L− 4 + ζ2

)
+ α2

s...

I Independent on Γ (for leading twist Γ) → talk by S.Schindler
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Components of factorized expression (intermediate)

�instant jet TMD function� (in position space)

I Rapidity divergent!

TMD soft factor

I Rapidity divergent! Rapidity divergent!

I Z.b. = zero-bin subtractions, (in some regularizations) equals to S2
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Recombination of rapidity divergences and �nal form

W [Γ] = |CH(p̂v)|2 Φ̃[Γ′](b, `v−;P, S)
S(b)

Z.b.
Ψ̃(b; v) + power corrections

n-rap.div.

cancel

n̄-rap.div.

cancel

RTMD(ζ)R−1
TMD(ζ)

RTMD also contains a �nite and
non-pertrubative parts such that
Φ̃RTMD = Φ is universal TMD.

RTMD = 1√
STMD

W [Γ] = |CH
(
p̂v

µ

)
|2 Φ[Γ′](b, `v−;µ, ζ;P, S) Ψ(b;µ, ζ̄; v) + power corrections

I Φ[Γ′](b, `v−;µ, ζ;P, S) is ordinary TMD distribution (e.g. Φ[γ+] = f1 + (b× s)Mf⊥1T )

I Ψ(b;µ, ζ̄; v) is composition of soft-factors; Ψ ∼ Ψ̃/
√
S

ζζ̄ = (2p̂+v−)2µ2 ∼ (2xP+v−)2µ2

Up to minor details it coincides with [Ebert,Stewart,Zhao,19] and [Ji,Liu,Liu,19]
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Sources and sizes of power corrections

W [Γ] = |CH
(
p̂v

µ

)
|2 Φ[Γ′](b, `v−;µ, ζ;P, S) Ψ(b;µ, ζ̄; v) + power corrections

I
P−

x2P+
and

`

L
from collinear/anti-collinear modes separation

I
1

x|b|P+
from collinear/transverse modes separation

I
b

L
from anti-collinear/transverse modes separation

I `ΛQCD to remove `-dependence from Ψ

Factorization limit: L→∞, P+ →∞, b-�xed(non-zero), `-�xed(also zero).
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Ψ(b;µ, ζ̄; v) is generally unknown (see talk by Qi-An Zhang)
It cancels in the ratios with same b.

If the same v, ` L are taken the Wilson-line renormalization factor also cancel.

R =
W

[Γ1]
f1←h1

(b; `, L, v;P1, S1;µ)

W
[Γ2]
f2←h2

(b; `, L, v;P2, S2;µ)

=
|CH

(
p̂v
µ

)
|2 Φ

[Γ′1]

f1←h1
(b, `v−;µ, ζ;P1, S1)

|CH
(
p̂v
µ

)
|2 Φ

[Γ′2]

f2←h2
(b, `v−;µ, ζ;P2, S2)

+ power corrections

Plenty of information/tests

I Test power corrections! E.g. Γ1 = γ− and Γ2 = γ+ then R = power corrections

I ...

I Collins-Soper kernel
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Collins-Soper kernel

I CS-kernel dictates evolution for
TMD distribution

I Is a non-perturbative function

I Perturbative at small-b (known
to NNLO=three-loops)

I Describes QCD vacuum
properties [AV;2003.02288]

I Extracted from data

Phenomenological extractions

1 2 3 4 5

0.2

0.4

0.6
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Extraction of Collins-Soper kernel D = −K
2

Ratio at di�erent P1,2 and rest all the same [Ebert,Stewart,Zhao,1811.00026]

RP1/P2
=
P+

2

P+
1

∫
dx1e

ix1`v
−P+

1

∣∣∣CH
(
x1v−P

+
1

µ

)∣∣∣2Φ
[Γ′]
f←h(x1, b;µ, ζ1)

∫
dx2e

ix2`v
−P+

2

∣∣∣CH
(
x2v−P

+
2

µ

)∣∣∣2Φ
[Γ′]
f←h(x2, b;µ, ζ2)

+ power corr.

here ζ1 = c0(2|x1v−|P+
1 )2 and ζ2 = c0(2|x2v−|P+

2 )2.

RP1/P2
=

(
P+

2

P+
1

)2D(b,µ)+1

∫
dx1e

ix1`v
−P+

1

∣∣∣CH
(
x1v−P

+
1

µ

)∣∣∣2Φ
[Γ′]
f←h(x1, b)|x1|−2D(b,µ)

∫
dx2e

ix2`v
−P+

2

∣∣∣CH
(
x2v−P

+
2

µ

)∣∣∣2Φ
[Γ′]
f←h(x2, b)|x2|−2D(b,µ)

+ power corr.

I Both TMDs at the same (µ, ζ)-point (e.g. to null-evolution-line)

I Convergence problem! D > 0
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Extraction of Collins-Soper kernel D = −K
2

Ratio at di�erent P1,2 and rest all the same [Ebert,Stewart,Zhao,1811.00026]

To facilitate cancellation set ` = 0

RP1/P2
=

(
P+

2

P+
1

)2D(b,µ)+1

∫
dx
∣∣∣CH

(
xv−P+

1

µ

)∣∣∣2Φ
[Γ′]
f←h(x, b)|x|−2D(b,µ)

∫
dx
∣∣∣CH

(
xv−P+

2

µ

)∣∣∣2Φ
[Γ′]
f←h(x, b)|x|−2D(b,µ)

+ power corr.

TMDs do not cancel only due to perturbative logarithms (here µ = 2|v−|
√
P+

1 P
+
2 )

RP1/P2
(` = 0) =

(
P+

2

P+
1

)2D(b,µ)+1

r + power corrections (1)

r = 1 + 4CF
αs(µ)

4π
ln

(
P+

1

P+
2

)[
1− 2MΓ

ln |x|(b, µ)
]

+O(α2
s)
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details in [Schäfer,AV,2002.07527]

MΓ
ln |x|(b, µ) =

∫
dxln |x||x|−2D+1Φ[Γ](x, b)∫
dx|x|−2D+1Φ[Γ](x, b)

Numerator and denominator could diverge at x→ 0

I Convergent properties of the integral strongly depends on Γ
I Γ = γ+ divergent for all b.
I Γ = γ+γ5 divergent for large b.
I Γ = σµ+γ5 convergent.

I Phenomenological studies shows that Mln |x| is slow function
of b. The test on phenomenological extractions shows

r = constant+ 2− 3%(b).

for b ∼ 1− 5GeV−1.

→ talk by M.Schlemmer /Friday/
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Conclusion

I In the Large Momentum regime one can apply TMD factorization for lattice
observables

I The factorization theorem is more cumbersome and contaminated by extra factors and
(expectedly) strong power corrections

I Some combinations (ratios) are much clearer/simpler to measure and they still give a
valuable information about TMDs
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