# Transverse momentum dependent factorization for lattice observables 

Alexey Vladimirov

Regensburg University


## Introduction

In the limit of large hadron's momentum transverse momentum dependent (TMD) factorization can be applied to certain lattice observables.

Plenty of examples for collinear factorization (sensitive to PDF and GPD)
Could one study TMDs with lattice? $\Rightarrow$ YES



## Collinear factorization $\rightarrow$ PDFs

$$
\begin{aligned}
\bar{q}(z) \gamma^{\mu}[z, 0] q(0) & =\int_{0}^{1} d u \frac{\partial}{\partial z^{\mu}} \underbrace{\bar{q}(u z) \not \approx[u z, 0] q(0)}_{\mathrm{tw}-2}\left(1+\alpha_{s} \ldots\right)+z^{2}[\mathrm{tw}-3 / 4]+\ldots \\
\langle p| \bar{q}(z) \gamma^{\mu}[z, 0] q(0)|p\rangle & =2 p^{\mu} \int_{-1}^{1} d x e^{i x(p z)} \underbrace{f_{1}(x, x(p v))}_{\text {PDF }}\left(1+\alpha_{s} \ldots\right)+z^{2}[\mathrm{tw}-2 / 3 / 4]+\ldots
\end{aligned}
$$

Collinear factorization $\rightarrow$ PDFs

$$
\begin{aligned}
\bar{q}(z) \gamma^{\mu}[z, 0] q(0) & =\int_{0}^{1} d u \frac{\partial}{\partial z^{\mu}} \underbrace{\bar{q}(u z) \not \approx[u z, 0] q(0)}_{\text {tw-2 }}\left(1+\alpha_{s} \ldots\right)+z^{2}[\mathrm{tw}-3 / 4]+\ldots \\
\langle p| \bar{q}(z) \gamma^{\mu}[z, 0] q(0)|p\rangle & =2 p^{\mu} \int_{-1}^{1} d x e^{i x(p z)} \underbrace{f_{1}(x, x(p v))}_{\text {PDF }}\left(1+\alpha_{s} \ldots\right)+z^{2}[\mathrm{tw}-2 / 3 / 4]+\ldots
\end{aligned}
$$





Larger $(p v)=$ smoother asymptotic $z^{2} \rightarrow 0$.

## One can construct plenty of such observables

(Thursday session!)[Braun, Muller,07; Ji,13; Radyushkin, 16; Ma,Qiu,17;...]

That does not work for TMD-like observables.
There is no twist-expansion, instead there is field-mode separation

## Field modes:

$q \rightarrow q_{\text {collinear }}+q_{\text {anti-collinear }}+q_{\text {soft }}+q_{\text {hard }}$

$$
p_{\text {collinear }} \sim\left\{1, \lambda^{2}, \lambda\right\} \quad \lim _{p \rightarrow p^{+} \bar{n}}|p\rangle \simeq \Psi\left(q_{\text {collinear }}, A_{\text {collinear }}\right)|0\rangle
$$

If the observable is "spherically-symmetric" then this approach gives collinear factorization

If there are some (finite) transverse elements then this approach gives TMD factorization

Constructing TMD-sensitive observable


## Restrictions on observable

- Equal-time
- With transverse size $(b P)=0$
- With anti-collinear modes


## Simplest case:

$$
\begin{align*}
& W_{f \leftarrow h}^{[\Gamma]}(b ; \ell, L ; v, P, S)=\frac{1}{2}\langle P, S| \bar{q}_{f}(b+\ell v) \Gamma  \tag{1}\\
& \times[b+\ell v, b+L v][b+L v, L v][L v, 0] q_{f}(0)|P, S\rangle
\end{align*}
$$

$\Gamma=$ some Dirac structure

Constructing TMD-sensitive observable


## Restrictions on observable

- Equal-time
- With transverse size $(b P)=0$
- With anti-collinear modes

Simplest case:

$$
\begin{align*}
& W_{f \leftarrow h}^{[\Gamma]}(b ; \ell, L ; v, P, S)=\frac{1}{2}\langle P, S| \bar{q}_{f}(b+\ell v) \Gamma  \tag{1}\\
& \times[b+\ell v, b+L v][b+L v, L v][L v, 0] q_{f}(0)|P, S\rangle
\end{align*}
$$

$\Gamma=$ some Dirac structure

It is like DIS+(instant)jet

$$
\begin{aligned}
\text { At } L \rightarrow \infty \quad[0, L v] \rightarrow H(0) \quad\left(\text { with } \mathcal{L}_{H H}\right. & \left.=H^{\dagger}(i v D) H\right) \\
\text { current } J_{i}(x) & =H^{\dagger}(x) q(x), \quad \text { hadron tensor } W_{i j}
\end{aligned}=\langle P| J_{i}^{\dagger}(x) J_{j}(0)|P\rangle
$$

Factorization is (almost) equivalent to factorization of SIDIS or DY


Factorization is (almost) equivalent to factorization of SIDIS or DY


Negelecting power corrections and accounting the overlap in the soft modes

$$
W_{f \leftarrow h}^{[\Gamma]}(b ; \ell, L ; v, P, S)=\left|C_{H}(\hat{p} v)\right|^{2} \widetilde{\Phi}_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}\left(b, \ell v^{-} ; P, S\right) \widetilde{\Psi}\left(b, \ell v^{+} ; v\right) \frac{S(b)}{\mathrm{Z} . \mathrm{b}}
$$

Factorization is (almost) equivalent to factorization of SIDIS or DY


Negelecting power corrections and accounting the overlap in the soft modes

$$
W_{f \leftarrow h}^{[\Gamma]}(b ; \ell, L ; v, P, S)=|C_{H}(\underbrace{(\hat{p} v)})|^{2} \widetilde{\Phi}_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}\left(b, \ell v^{-} ; P, S\right) \widetilde{\Psi}\left(b, \ell v^{+} ; v\right) \frac{S(b)}{\text { Operator of parton's momentum }} \text { Fourier conjugated to } \ell .(\hat{p} \sim x P)
$$

Components of factorized expression (intermediate)
unsubtracted TMDPDF (in position space)

$$
\tilde{\Phi}_{f \leftarrow h}^{[\Gamma]}\left(b, x^{-} ; P, S\right)=\langle P, S| \bar{q}\left(x^{-} n+b\right)\left[x^{-} n+b,-\infty n+b\right] \frac{\Gamma}{2}[-\infty n, 0] q(0)|P, S\rangle,
$$

- Rapidity divergent!
- The leading power contribution selects $\Gamma=\Gamma^{\prime}$

$$
\Gamma^{\prime}=\frac{1}{4} \gamma^{+} \gamma^{-} \Gamma \gamma^{-} \gamma^{+}
$$

Hard coefficient function [Ebert,Stewart,Zhao;1811.00026][AV,Schäfer;2002.07527]

$$
\left|C_{H}\right|^{2}=1+C_{F} \frac{\alpha_{s}}{4 \pi}\left(-\mathbf{L}^{2}+2 \mathbf{L}-4+\zeta_{2}\right)+\alpha_{s}^{2} \cdots
$$

- Independent on $\Gamma$ (for leading twist $\Gamma) \rightarrow$ talk by S.Schindler

Components of factorized expression (intermediate)
"instant jet TMD function" (in position space)

$$
\widetilde{\Psi}\left(b, x^{+} ; v\right)=\langle 0| H^{\dagger}(0)[0,-\infty \bar{n}]\left[-\infty \bar{n}+b, x^{+} \bar{n}+b\right] H\left(x^{+} \bar{n}+b\right)|0\rangle
$$

- Rapidity divergent!

TMD soft factor

$$
S(b)=\frac{\operatorname{Tr}}{N_{c}}\langle 0|[b,-n \infty+b][-n \infty, 0][0,-\bar{n} \infty][-\bar{n} \infty+b, b]|0\rangle
$$

- Rapidity divergent! Rapidity divergent!
- Z.b. = zero-bin subtractions, (in some regularizations) equals to $S^{2}$

Universitãt Regensburg

Recombination of rapidity divergences and final form


$$
\begin{gathered}
R_{\mathrm{TMD}} \text { also contains a finite and } \\
\text { non-pertrubative parts such that } \\
\tilde{\Phi} R_{\mathrm{TMD}}=\Phi \text { is universal TMD. } \\
R_{\mathrm{TMD}}=\frac{1}{\sqrt{S_{\mathrm{TMD}}}}
\end{gathered}
$$

Up to minor details it coincides with [Ebert,Stewart,Zhao,19] and [Ji,Liu,Liu,19]

## Recombination of rapidity divergences and final form

$$
W^{[\Gamma]}=\left|C_{H}(\hat{p} v)\right|^{2} \tilde{\Phi}^{\left[\Gamma^{\prime}\right]}\left(b, \ell v^{-} ; P, S\right) \overbrace{\frac{S(b)}{\mathrm{Z} . \mathrm{b}}} \tilde{\mathrm{~T}}_{\mathrm{TMD}}(\zeta) R_{\mathrm{TMD}}^{-1}(\bar{b} ; v) \quad \text { - power corrections }
$$

$$
W^{[\Gamma]}=\left|C_{H}\left(\frac{\hat{p} v}{\mu}\right)\right|^{2} \Phi^{\left[\Gamma^{\prime}\right]}\left(b, \ell v^{-} ; \mu, \zeta ; P, S\right) \Psi(b ; \mu, \bar{\zeta} ; v) \quad \text { + power corrections }
$$

- $\Phi^{\left[\Gamma^{\prime}\right]}\left(b, \ell v^{-} ; \mu, \zeta ; P, S\right)$ is ordinary TMD distribution (e.g. $\left.\Phi^{\left[\gamma^{+}\right]}=f_{1}+(b \times s) M f_{1 T}^{\perp}\right)$
- $\Psi(b ; \mu, \bar{\zeta} ; v)$ is composition of soft-factors; $\Psi \sim \tilde{\Psi} / \sqrt{S}$

$$
\zeta \bar{\zeta}=\left(2 \hat{p}^{+} v^{-}\right)^{2} \mu^{2} \sim\left(2 x P^{+} v^{-}\right)^{2} \mu^{2}
$$

Up to minor details it coincides with [Ebert,Stewart,Zhao,19] and [Ji,Liu,Liu,19]

Sources and sizes of power corrections
$W^{[\Gamma]}=\left|C_{H}\left(\frac{\hat{p} v}{\mu}\right)\right|^{2} \Phi^{\left[\Gamma^{\prime}\right]}\left(b, \ell v^{-} ; \mu, \zeta ; P, S\right) \Psi(b ; \mu, \bar{\zeta} ; v) \quad$ + power corrections
$>\frac{P^{-}}{x^{2} P^{+}}$and $\frac{\ell}{L}$ from collinear/anti-collinear modes separation
$-\frac{1}{x|b| P^{+}}$from collinear/transverse modes separation

- $\frac{b}{L}$ from anti-collinear/transverse modes separation
$-\ell \Lambda_{\mathrm{QCD}}$ to remove $\ell$-dependence from $\Psi$

Factorization limit: $L \rightarrow \infty, P^{+} \rightarrow \infty, b$-fixed(non-zero), $\ell$-fixed(also zero).

Universitãt Regensburg

$$
\begin{aligned}
& \Psi(b ; \mu, \bar{\zeta} ; v) \text { is generally unknown (see talk by Qi-An Zhang) } \\
& \text { It cancels in the ratios with same } b \text {. }
\end{aligned}
$$

If the same $v, \ell L$ are taken the Wilson-line renormalization factor also cancel.

$$
\begin{aligned}
R & =\frac{W_{f_{1} \leftarrow h_{1}}^{\left[\Gamma_{1}\right]}\left(b ; \ell, L, v ; P_{1}, S_{1} ; \mu\right)}{W_{f_{2} \leftarrow h_{2}}^{\left[\Gamma_{2}\right]}\left(b ; \ell, L, v ; P_{2}, S_{2} ; \mu\right)} \\
& =\frac{\left|C_{H}\left(\frac{\hat{p} v}{\mu}\right)\right|^{2} \Phi_{f_{1} \leftarrow h_{1}}^{\left[\Gamma_{1}^{\prime}\right]}\left(b, \ell v^{-} ; \mu, \zeta ; P_{1}, S_{1}\right)}{\left|C_{H}\left(\frac{\hat{p} v}{\mu}\right)\right|^{2} \Phi_{f_{2} \leftarrow h_{2}}^{\left[\Gamma_{2}^{\prime}\right]}\left(b, \ell v^{-} ; \mu, \zeta ; P_{2}, S_{2}\right)}+\text { power corrections }
\end{aligned}
$$

## Plenty of information/tests

- Test power corrections! E.g. $\Gamma_{1}=\gamma^{-}$and $\Gamma_{2}=\gamma^{+}$then $R=$ power corrections
- Collins-Soper kernel

Collins-Soper kernel

- CS-kernel dictates evolution for TMD distribution
- Is a non-perturbative function
- Perturbative at small-b (known to NNLO=three-loops)
- Describes QCD vacuum properties [AV;2003.02288]
- Extracted from data


## Phenomenological extractions



Universitāt Regensburg

Extraction of Collins-Soper kernel $\mathcal{D}=-\frac{K}{2}$
Ratio at different $P_{1,2}$ and rest all the same [Ebert,Stewart,Zhao,1811.00026]

$$
R_{P_{1} / P_{2}}=\frac{P_{2}^{+}}{P_{1}^{+}} \frac{\int d x_{1} e^{i x_{1} \ell v^{-} P_{1}^{+}}\left|C_{H}\left(\frac{x_{1} v^{-} P_{1}^{+}}{\mu}\right)\right|^{2} \Phi_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}\left(x_{1}, b ; \mu, \zeta_{1}\right)}{\int d x_{2} e^{i x_{2} \ell v^{-} P_{2}^{+}}\left|C_{H}\left(\frac{x_{2} v^{-} P_{2}^{+}}{\mu}\right)\right|^{2} \Phi_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}\left(x_{2}, b ; \mu, \zeta_{2}\right)}+\text { power corr. }
$$

here $\zeta_{1}=c_{0}\left(2\left|x_{1} v^{-}\right| P_{1}^{+}\right)^{2}$ and $\zeta_{2}=c_{0}\left(2\left|x_{2} v^{-}\right| P_{2}^{+}\right)^{2}$.

Universităt Regensburg

Extraction of Collins-Soper kernel $\mathcal{D}=-\frac{K}{2}$
Ratio at different $P_{1,2}$ and rest all the same [Ebert,Stewart,Zhao,1811.00026]

$$
R_{P_{1} / P_{2}}=\frac{P_{2}^{+}}{P_{1}^{+}} \frac{\int d x_{1} e^{i x_{1} \ell v^{-} P_{1}^{+}}\left|C_{H}\left(\frac{x_{1} v^{-} P_{1}^{+}}{\mu}\right)\right|^{2} \Phi_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}\left(x_{1}, b ; \mu, \zeta_{1}\right)}{\int d x_{2} e^{i x_{2} \ell v^{-} P_{2}^{+}}\left|C_{H}\left(\frac{x_{2} v^{-} P_{2}^{+}}{\mu}\right)\right|^{2} \Phi_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}\left(x_{2}, b ; \mu, \zeta_{2}\right)}+\text { power corr. }
$$

here $\zeta_{1}=c_{0}\left(2\left|x_{1} v^{-}\right| P_{1}^{+}\right)^{2}$ and $\zeta_{2}=c_{0}\left(2\left|x_{2} v^{-}\right| P_{2}^{+}\right)^{2}$.
$R_{P_{1} / P_{2}}=\left(\frac{P_{2}^{+}}{P_{1}^{+}}\right)^{2 \mathcal{D}(b, \mu)+1} \frac{\int d x_{1} e^{i x_{1} \ell v^{-} P_{1}^{+}}\left|C_{H}\left(\frac{x_{1} v^{-} P_{1}^{+}}{\mu}\right)\right|^{2} \Phi_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}\left(x_{1}, b\right)\left|x_{1}\right|^{-2 \mathcal{D}(b, \mu)}}{\int d x_{2} e^{i x_{2} \ell v^{-} P_{2}^{+}}\left|C_{H}\left(\frac{x_{2} v^{-} P_{2}^{+}}{\mu}\right)\right|^{2} \Phi_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}\left(x_{2}, b\right)\left|x_{2}\right|^{-2 \mathcal{D}(b, \mu)}}+\mathbf{p o}$

- Both TMDs at the same ( $\mu, \zeta$ )-point (e.g. to null-evolution-line)
- Convergence problem! $\mathcal{D}>0$

Extraction of Collins-Soper kernel $\mathcal{D}=-\frac{K}{2}$
Ratio at different $P_{1,2}$ and rest all the same [Ebert,Stewart,Zhao,1811.00026]

To facilitate cancellation set $\ell=0$
$R_{P_{1} / P_{2}}=\left(\frac{P_{2}^{+}}{P_{1}^{+}}\right)^{2 \mathcal{D}(b, \mu)+1} \frac{\int d x\left|C_{H}\left(\frac{x v^{-} P_{1}^{+}}{\mu}\right)\right|^{2} \Phi_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}(x, b)|x|^{-2 \mathcal{D}(b, \mu)}}{\int d x\left|C_{H}\left(\frac{x v^{-} P_{2}^{+}}{\mu}\right)\right|^{2} \Phi_{f \leftarrow h}^{\left[\Gamma^{\prime}\right]}(x, b)|x|^{-2 \mathcal{D}(b, \mu)}}+$ power corr.

TMDs do not cancel only due to perturbative logarithms (here $\mu=2\left|v^{-}\right| \sqrt{P_{1}^{+} P_{2}^{+}}$)

$$
\begin{align*}
& R_{P_{1} / P_{2}}(\ell=0)=\left(\frac{P_{2}^{+}}{P_{1}^{+}}\right)^{2 \mathcal{D}(b, \mu)+1} \mathbf{r}+\text { power corrections }  \tag{1}\\
& \mathbf{r}=1+4 C_{F} \frac{\alpha_{s}(\mu)}{4 \pi} \ln \left(\frac{P_{1}^{+}}{P_{2}^{+}}\right)\left[1-2 M_{\ln |x|}^{\Gamma}(b, \mu)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{align*}
$$

$$
M_{\ln |x|}^{\Gamma}(b, \mu)=\frac{\int d x \ln |x||x|^{-2 \mathcal{D}+1} \Phi^{[\Gamma]}(x, b)}{\int d x|x|^{-2 \mathcal{D}+1} \Phi^{[\Gamma]}(x, b)}
$$

Numerator and denominator could diverge at $x \rightarrow 0$

- Convergent properties of the integral strongly depends on $\Gamma$
- $\Gamma=\gamma^{+}$divergent for all $b$.
- $\Gamma=\gamma^{+} \gamma^{5}$ divergent for large $b$.
- $\Gamma=\sigma^{\mu+} \gamma^{5}$ convergent.
- Phenomenological studies shows that $M_{\ln |x|}$ is slow function of $b$. The test on phenomenological extractions shows

$$
\mathbf{r}=\mathbf{c o n s t a n t}+2-3 \%(b) .
$$

for $b \sim 1-5 \mathrm{GeV}^{-1}$.

$\rightarrow$ talk by M.Schlemmer /Friday/

Universitãt Regensburg

## Conclusion

- In the Large Momentum regime one can apply TMD factorization for lattice observables
- The factorization theorem is more cumbersome and contaminated by extra factors and (expectedly) strong power corrections
- Some combinations (ratios) are much clearer/simpler to measure and they still give a valuable information about TMDs

Universitãt Regensburg

